使多个csv文件和json文件将它们保存到各自的文件夹中

时间:2019-04-11 19:18:53

标签: python csv

我有一个对象识别脚本,可以对从多个视频中提取的帧进行识别。我想将读取的文件名,预测的类名称和每个视频的准确性得分保存到具有标题的csv文件中,该标题将保存到各自的视频文件夹中。我也想将读取的文件名保存到单独的json文件中,并将其保存到相应的视频文件夹中

当前,脚本显示准确性得分和检测到的对象名称,并将其写入单个csv,每次处理新视频中的帧以进行识别时,该csv会将数据附加到同一文件中。

def recognize_object(model_name,ckpt_path,label_path,test_img_path):

    count=0
    sys.path.append("..")

    MODEL_NAME = model_name

    #CWD_PATH = os.getcwd()

    #PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')

    PATH_TO_CKPT = ckpt_path

    #PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt')

    PATH_TO_LABELS = label_path

    #PATH_TO_IMAGE = list(glob.glob("C:\\new_multi_cat\\models\\research\\object_detection\\img_test\\*jpg"))

    PATH_TO_IMAGE = list(glob(test_img_path))

    NUM_CLASSES = 3

    label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
    categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
    category_index = label_map_util.create_category_index(categories)

    detection_graph = tf.Graph()

    with detection_graph.as_default():
        od_graph_def = tf.GraphDef()
        with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
            serialized_graph = fid.read()
            od_graph_def.ParseFromString(serialized_graph)
            tf.import_graph_def(od_graph_def, name='')

        sess = tf.Session(graph=detection_graph)

    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

    detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
    detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
    detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
    num_detections = detection_graph.get_tensor_by_name('num_detections:0')


    for paths in range(len(PATH_TO_IMAGE)):
        image = cv2.imread(PATH_TO_IMAGE[paths])
        image_expanded = np.expand_dims(image, axis=0)

        (boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections],feed_dict={image_tensor: image_expanded})


        vis_util.visualize_boxes_and_labels_on_image_array(
        image,
        np.squeeze(boxes),
        np.squeeze(classes).astype(np.int32),
        np.squeeze(scores),
        category_index,
        use_normalized_coordinates=True,
        line_thickness=4,
        min_score_thresh=0.80,
        skip_scores=True)


        coordinates=vis_util.return_coordinates(
        image,
        np.squeeze(boxes),
        np.squeeze(classes).astype(np.int32),
        np.squeeze(scores),
        category_index,
        use_normalized_coordinates=True,
        line_thickness=4,
        min_score_thresh=0.80)

        threshold=0.80


        **objects = []
        with open('metadata.csv','a') as csv_file:
            writer = csv.writer(csv_file)
            for index, value in enumerate(classes[0]):
                object_dict = {}
                if scores[0, index] > threshold:
                    object_dict[(category_index.get(value)).get('name').encode('utf8')] = scores[0, index]
                    objects.append(object_dict)
            writer.writerow(objects)
            print (objects)**

假设代码处理video1。因此,我想将video1帧的检测结果(如文件名,准确性得分和预测类)保存到提取video1帧的文件夹内的单独的csv文件中。 video2的csv文件需要保存在包含video2帧的文件夹中,依此类推。突出显示的部分是csv脚本。另外,我还需要将每个视频的读取文件名保存到一个单独的json文件中

0 个答案:

没有答案