分支预测是否仍在显着加快阵列处理速度?

时间:2019-04-11 14:41:09

标签: c++ c performance branch-prediction

我正在阅读有关why is it faster to process a sorted array than an unsorted array?的有趣帖子,并看到@ mp31415发表的评论说:

  

仅作记录。在Windows / VS2017 / i7-6700K 4GHz上,两个版本之间没有区别。两种情况都需要0.6s。如果外部循环中的迭代次数增加了10倍,那么两种情况下的执行时间也会增加10倍,达到6s

因此,我在online c/c++ compiler(我想是现代服务器体系结构)上进行了尝试,对于排序和未排序,我分别得到〜1.9s和〜1.85s,没有太大的不同,但是可重复

所以我想知道现代建筑是否仍然适用? 问题来自2012年,距离现在不远... 还是我在哪里错了?


重新打开的问题精度:

  • 请不要为我添加C代码作为示例。这是一个可怕的错误。该代码不仅是错误的,而且还会误导那些专注于代码本身而不是问题的人。

  • 当我第一次尝试上面链接中使用的C ++代码时,只有2%的差异(1.9s和1.85s)。

  • 我的第一个问题和意图是关于上一篇文章,其c ++代码和@ mp31415的注释。

  • @rustyx发表了一个有趣的评论,我想知道它是否可以解释我的观察结果。

      

    有趣的是,调试版本在排序/未排序之间的差异为400%,而发布版本的差异最大为5%(i7-7700)。

换句话说,我的问题是:

  • 为什么上一篇文章中的c ++代码不能像上一版OP所声称的那样具有良好的性能?

规定:

  • 发布版本和调试版本之间的时间差异可以解释吗?

1 个答案:

答案 0 :(得分:5)

您是as-if rule的受害者:

  仿真(仅)抽象计算机的可观察到的行为是必需的

...一致的实现...

考虑被测功能...

const size_t arraySize = 32768;
int *data;

long long test()
{
    long long sum = 0;
    for (size_t i = 0; i < 100000; ++i)
    {
        // Primary loop
        for (size_t c = 0; c < arraySize; ++c)
        {
            if (data[c] >= 128)
                sum += data[c];
        }
    }
    return sum;
}

还有generated assembly(VS 2017,x86_64 / O2模式)

机器不执行 执行循环,而是执行一个执行以下操作的 like 程序:

long long test()
{
    long long sum = 0;
    // Primary loop
    for (size_t c = 0; c < arraySize; ++c)
    {
        for (size_t i = 0; i < 20000; ++i)
        {
            if (data[c] >= 128)
                sum += data[c] * 5;
        }
    }
    return sum;
}

观察优化器如何颠倒循环顺序并破坏基准。

显然,后一个版本对分支预测器更友好。

反过来,您可以通过在外部循环中引入依赖来破坏循环提升优化:

long long test()
{
    long long sum = 0;
    for (size_t i = 0; i < 100000; ++i)
    {
        sum += data[sum % 15];  // <== dependency!
        // Primary loop
        for (size_t c = 0; c < arraySize; ++c)
        {
            if (data[c] >= 128)
                sum += data[c];
        }
    }
    return sum;
}

现在版本再次展示了已排序/未排序数据之间的巨大差异。在我的系统(i7-7700)上是1.6s vs 11s(或700%)。

结论:当我们面临前所未有的流水线深度和指令级并行性时,分支预测器比以往任何时候都重要。