如何使用图像测试CNN模型?

时间:2019-04-11 06:27:32

标签: python-3.x tensorflow keras jupyter-notebook conv-neural-network

简介/设置

我是编程新手,我从一个教程中制作了第一个CNN模型。 我已经在C:\ Users \ labadmin

中设置了我的jupyter / tensorflow / keras

我了解的是,我只需要走出labadmin的道路,即可实施我的数据进行测试和培训。

由于我不确定是什么原因导致了错误,所以我粘贴了整个代码和错误,我认为这与系统无法获取数据有关。

具有如下数据设置的文件夹:

labadmin有一个名为 data 的文件夹,其中有两个文件夹 培训测试

在两个文件夹中,猫图像和狗图像均被混洗。每个文件夹中有10000张图片,因此应该足够:

本教程讲授。     1.如何建立模型     2.定义标签     3.创建您的训练数据     4.创建和构建图层     5.创建测试数据     6.(据我了解)我创建的代码的最后一部分是
    验证我的模型。

这是代码


    import cv2
    import numpy as np
    import os
    from random import shuffle
    from tqdm import tqdm

    TRAIN_DIR = "data\\training"
    TEST_DIR = "data\\test"
    IMG_SIZE = 50

    LR = 1e-3

    MODEL_NAME = 'dogvscats-{}-{}.model'.format(LR, '2cov-basic1')

    def label_img(img):
        word_label = img.split('.')[-3]
        if word_label == 'cat': return [1,0]
        elif word_label == 'dog': return [0,1]

    def creat_train_data():
        training_data = []
        for img in tqdm(os.listdir(TRAIN_DIR)):
            label = label_img(img)
            path = os.path.join(TRAIN_DIR,img)
            img = cv2.resize(cv2.imread(path, cv2.IMREAD_GRAYSCALE), (IMG_SIZE,IMG_SIZE))
            training_data.append([np.array(img), np.array(label)])
        shuffle(training_data)
        np.save('training.npy', training_data) #save file
        return training_data

    import tflearn
    from tflearn.layers.conv import conv_2d, max_pool_2d
    from tflearn.layers.core import input_data, dropout, fully_connected
    from tflearn.layers.estimator import regression



    # Building convolutional convnet
    convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input')
    # http://tflearn.org/layers/conv/
    # http://tflearn.org/activations/
    convnet = conv_2d(convnet, 32, 2, activation='relu')
    convnet = max_pool_2d(convnet, 2)

    convnet = conv_2d(convnet, 64, 2, activation='relu')
    convnet = max_pool_2d(convnet, 2)

    convnet = fully_connected(convnet, 1024, activation='relu')
    convnet = dropout(convnet, 0.8)

    #OUTPUT layer
    convnet = fully_connected(convnet, 2, activation='softmax')
    convnet = regression(convnet, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets')

    model = tflearn.DNN(convnet, tensorboard_dir='log')

    def process_test_data():
        testing_data = []
        for img in tqdm(os.listdir(TEST_DIR)):
            path = os.path.join(TEST_DIR,img)
            img_num = img.split ('.')[0]  #ID of pic=img_num
            img = cv2.resize(cv2-imread(path, cv2.IMREAD_GRAYSCALE),  (IMG_SIZE,IMG_SIZE))
            testing_data.append([np.array(img), img_num])

        np.save('test_data.npy', testing_data)
        return testing_data

    train_data = creat_train_data()
    #if you already have train data:
    #train_data = np.load('train_data.npy')
    100%|███████████████████████████████████████████████████████████████████████████| 21756/21756 [02:39<00:00, 136.07it/s]

    if os.path.exists('{}<.meta'.format(MODEL_NAME)):
        model.load(MODEL_NAME)
        print('model loaded!')

    train = train_data[:-500]
    test = train_data[:-500]

    X = np.array([i[0] for i in train]).reshape( -1, IMG_SIZE, IMG_SIZE, 1) #feature set
    Y= [i[1] for i in test] #label

    test_x = np.array([i[0] for i in train]).reshape( -1, IMG_SIZE, IMG_SIZE, 1) 
    test_y= [i[1] for i in test] 

    model.fit({'input': X}, {'targets': Y}, n_epoch=5, validation_set=({'input': test_x}, {'targets': test_y}), 
        snapshot_step=500, show_metric=True, run_id=MODEL_NAME)

    Training Step: 1664  | total loss: 9.55887 | time: 63.467s
    | Adam | epoch: 005 | loss: 9.55887 - acc: 0.5849 -- iter: 21248/21256
    Training Step: 1665  | total loss: 9.71830 | time: 74.722s
    | Adam | epoch: 005 | loss: 9.71830 - acc: 0.5779 | val_loss: 9.81653 - val_acc: 0.5737 -- iter: 21256/21256
    --

三个问题

我曾尝试解决三个问题,但没有找到解决办法的运气:

第一个出现在:#建立卷积convnet


    curses is not supported on this machine (please install/reinstall curses for an optimal experience)
    WARNING:tensorflow:From C:\Users\labadmin\Miniconda3\envs\tensorflow\lib\site-packages\tflearn\initializations.py:119: UniformUnitScaling.__init__ (from tensorflow.python.ops.init_ops) is deprecated and will be removed in a future version.
    Instructions for updating:
    Use tf.initializers.variance_scaling instead with distribution=uniform to get equivalent behavior.
    WARNING:tensorflow:From C:\Users\labadmin\Miniconda3\envs\tensorflow\lib\site-packages\tflearn\objectives.py:66: calling reduce_sum (from tensorflow.python.ops.math_ops) with keep_dims is deprecated and will be removed in a future version.
    Instructions for updating:
    keep_dims is deprecated, use keepdims instead

第二个出现在:print('模型已加载!')

    if os.path.exists('{}<.meta'.format(MODEL_NAME)):
        model.load(MODEL_NAME)
        print('model loaded!')

未打印代码的地方,是否表​​示未加载数据?

第三个

教程没有介绍如何使用图像测试模型。那么,我如何以及如何添加代码以获取模型(也正在保存模型),并从文件夹中运行图像,并以给定的输出作为分类?

2 个答案:

答案 0 :(得分:1)

1st:警告消息已清除,请紧跟其后,警告将消失。但是请放心,如果您不这样做,仍然可以正常运行代码。

2nd:是的。如果未打印出model load!,则表明尚未加载模型,请检查模型文件的路径。

第3次:要在训练后保存模型,请使用model.save("PATH-TO-SAVE")。然后您可以通过model.load("PATH-TO-MODEL")加载它。

要进行预测,请使用model.predict({'input': X})。在这里http://tflearn.org/getting_started/#trainer-evaluator-predictor

第二个问题

  1. 要保存和加载模型,请使用
# Save a model
model.save('path-to-folder-you-want-to-save/my_model.tflearn')
# Load a model
model.load('the-folder-where-your-model-located/my_model.tflearn')

请记住,您应该具有模型文件的扩展名.tflearn

  1. 要进行预测,您需要像加载图像一样进行训练。
test_image = cv2.resize(cv2.imread("path-of-the-image", cv2.IMREAD_GRAYSCALE),  (IMG_SIZE,IMG_SIZE))

test_image = np.array(test_image).reshape( -1, IMG_SIZE, IMG_SIZE, 1)

prediction = model.predict({'input': test_image })

答案 1 :(得分:0)

感谢您的快速回复! 我想我已经解决了1.和2.问题。

但是我在最后一个方面有点挣扎: 我粘贴了:

model.save('log\models')
model.load("log\models")

由于某种原因,模型似乎保存在日志文件夹中,而不是模型文件夹中,这仍然提供以下输出:

INFO:tensorflow:C:\Users\labadmin\log\models is not in all_model_checkpoint_paths. Manually adding it.
INFO:tensorflow:Restoring parameters from C:\Users\labadmin\log\models

现在我不明白的最后一部分

model.predict({'cat.png': X})

图片位于labadmin(jupyter信封)中。我尝试将其移动到其他文件夹,但仍然收到相同的错误:

---------------------------------------------------------------------------
Exception                                 Traceback (most recent call last)
<ipython-input-51-60679ea3e242> in <module>
      1 model.save('log\models')
      2 model.load("log\models")
----> 3 model.predict({'cat.png': X})

~\Miniconda3\envs\tensorflow\lib\site-packages\tflearn\models\dnn.py in predict(self, X)
    254 
    255         """
--> 256         feed_dict = feed_dict_builder(X, None, self.inputs, None)
    257         return self.predictor.predict(feed_dict)
    258 

~\Miniconda3\envs\tensorflow\lib\site-packages\tflearn\utils.py in feed_dict_builder(X, Y, net_inputs, net_targets)
    292                     if var is None:
    293                         raise Exception("Feed dict asks for variable named '%s' but no "
--> 294                                         "such variable is known to exist" % key)
    295                     feed_dict[var] = val
    296 

Exception: Feed dict asks for variable named 'cat.png' but no such variable is known to exist