我正在研究cca-175练习题。我得到一个由|
分割的文本文件:
Christopher|Jan 11, 2015, |5
Kapil|11 Jan, 2015|5
Thomas|6/17/2014|5
John|22-08-2013|5
Mithun|2013|5
Jitendra||5
然后我将文件另存为RDD并尝试映射它。但是,在split
方法中使用单引号和双引号时,Scala返回两个不同的结果,并且使用单引号是正确的。
使用单引号line.split('|')
,它返回:
Array[String] = Array(Christopher, Jan 11, 2015, 5)
,这是正确的。
使用双引号line.split("|")
,返回:
Array[String] = Array(C, h, r, i, s, t, o, p, h, e, r, |, J, a, n, " ", 1, 1, , " ", 2, 0, 1, 5, |, 5)
,
这不是我所需要的。
有人可以帮助我解决这个问题吗? 谢谢!
scala> val feedbackmap = feedback.map(line=>line.split('|'))
feedbackmap: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[4] at map at <console>:29
scala> feedbackmap.first
19/04/10 14:15:55 INFO SparkContext: Starting job: first at <console>:32
19/04/10 14:15:55 INFO DAGScheduler: Got job 4 (first at <console>:32) with 1 output partitions
19/04/10 14:15:55 INFO DAGScheduler: Final stage: ResultStage 4 (first at <console>:32)
19/04/10 14:15:55 INFO DAGScheduler: Parents of final stage: List()
19/04/10 14:15:55 INFO DAGScheduler: Missing parents: List()
19/04/10 14:15:55 INFO DAGScheduler: Submitting ResultStage 4 (MapPartitionsRDD[4] at map at <console>:29), which has no missing parents
19/04/10 14:15:55 INFO MemoryStore: Block broadcast_5 stored as values in memory (estimated size 3.4 KB, free 510.7 MB)
19/04/10 14:15:55 INFO MemoryStore: Block broadcast_5_piece0 stored as bytes in memory (estimated size 2003.0 B, free 510.7 MB)
19/04/10 14:15:55 INFO BlockManagerInfo: Added broadcast_5_piece0 in memory on localhost:43371 (size: 2003.0 B, free: 511.1 MB)
19/04/10 14:15:55 INFO SparkContext: Created broadcast 5 from broadcast at DAGScheduler.scala:1008
19/04/10 14:15:55 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 4 (MapPartitionsRDD[4] at map at <console>:29)
19/04/10 14:15:55 INFO TaskSchedulerImpl: Adding task set 4.0 with 1 tasks
19/04/10 14:15:55 INFO TaskSetManager: Starting task 0.0 in stage 4.0 (TID 5, localhost, partition 0,ANY, 2171 bytes)
19/04/10 14:15:55 INFO Executor: Running task 0.0 in stage 4.0 (TID 5)
19/04/10 14:15:55 INFO HadoopRDD: Input split: hdfs://nn01.itversity.com:8020/user/junyanxu/scenario_37/feedback.txt:0+58
19/04/10 14:15:55 INFO Executor: Finished task 0.0 in stage 4.0 (TID 5). 2173 bytes result sent to driver
19/04/10 14:15:55 INFO TaskSetManager: Finished task 0.0 in stage 4.0 (TID 5) in 7 ms on localhost (1/1)
19/04/10 14:15:55 INFO TaskSchedulerImpl: Removed TaskSet 4.0, whose tasks have all completed, from pool
19/04/10 14:15:55 INFO DAGScheduler: ResultStage 4 (first at <console>:32) finished in 0.007 s
19/04/10 14:15:55 INFO DAGScheduler: Job 4 finished: first at <console>:32, took 0.012483 s
19/04/10 14:15:55 INFO TaskSchedulerImpl: Removed TaskSet 4.0, whose tasks have all completed, from pool
res3: Array[String] = Array(Christopher, Jan 11, 2015, 5)
scala> 19/04/10 14:20:55 WARN SparkContext: Killing executors is only supported in coarse-grained mode
19/04/10 14:20:55 WARN ExecutorAllocationManager: Unable to reach the cluster manager to kill executor driver!
val
scala> val feedbackmap2 = feedback.map(line=>line.split("|"))
feedbackmap2: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[5] at map at <console>:29
scala> feedbackmap2.first
19/04/10 14:22:58 INFO SparkContext: Starting job: first at <console>:32
19/04/10 14:22:58 INFO DAGScheduler: Got job 5 (first at <console>:32) with 1 output partitions
19/04/10 14:22:58 INFO DAGScheduler: Final stage: ResultStage 5 (first at <console>:32)
19/04/10 14:22:58 INFO DAGScheduler: Parents of final stage: List()
19/04/10 14:22:58 INFO DAGScheduler: Missing parents: List()
19/04/10 14:22:58 INFO DAGScheduler: Submitting ResultStage 5 (MapPartitionsRDD[5] at map at <console>:29), which has no missing parents
19/04/10 14:22:58 INFO MemoryStore: Block broadcast_6 stored as values in memory (estimated size 3.4 KB, free 510.7 MB)
19/04/10 14:22:58 INFO MemoryStore: Block broadcast_6_piece0 stored as bytes in memory (estimated size 2003.0 B, free 510.7 MB)
19/04/10 14:22:58 INFO BlockManagerInfo: Added broadcast_6_piece0 in memory on localhost:43371 (size: 2003.0 B, free: 511.1 MB)
19/04/10 14:22:58 INFO SparkContext: Created broadcast 6 from broadcast at DAGScheduler.scala:1008
19/04/10 14:22:58 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 5 (MapPartitionsRDD[5] at map at <console>:29)
19/04/10 14:22:58 INFO TaskSchedulerImpl: Adding task set 5.0 with 1 tasks
19/04/10 14:22:58 INFO TaskSetManager: Starting task 0.0 in stage 5.0 (TID 6, localhost, partition 0,ANY, 2171 bytes)
19/04/10 14:22:58 INFO Executor: Running task 0.0 in stage 5.0 (TID 6)
19/04/10 14:22:58 INFO HadoopRDD: Input split: hdfs://nn01.itversity.com:8020/user/junyanxu/scenario_37/feedback.txt:0+58
19/04/10 14:22:58 INFO Executor: Finished task 0.0 in stage 5.0 (TID 6). 2244 bytes result sent to driver
19/04/10 14:22:58 INFO TaskSetManager: Finished task 0.0 in stage 5.0 (TID 6) in 12 ms on localhost (1/1)
19/04/10 14:22:58 INFO TaskSchedulerImpl: Removed TaskSet 5.0, whose tasks have all completed, from pool
19/04/10 14:22:58 INFO DAGScheduler: ResultStage 5 (first at <console>:32) finished in 0.012 s
19/04/10 14:22:58 INFO DAGScheduler: Job 5 finished: first at <console>:32, took 0.040166 s
res4: Array[String] = Array(C, h, r, i, s, t, o, p, h, e, r, |, J, a, n, " ", 1, 1, ,, " ", 2, 0, 1, 5, |, 5)
答案 0 :(得分:2)
单引号表示一个字符,因此split('|')使用|字符当使用双引号时,可以使用字符串,特别是split可以接受正则表达式字符串,因此,字符串内部被解释为正则表达式或
答案 1 :(得分:1)
我认为Arnon Rotem-Gal-Oz很好地说明了字符串中|
作为拆分参数的含义:它是logical operator。
此外,这里发生的事情是您使用了正则表达式,这表示空字符串或空字符串。由于空字符串基本上可以在String
中的任何位置找到(如果可以帮助您理解"ab"
等效于"a" + "" + "b"
),请在每个字符之间进行分割。
另请参见scala string.split does not work,其中指出:
如果使用
split('|')
或split("""\|""")
,您应该会得到想要的东西。
实际上,转义的|
不再被视为逻辑运算符,而是正则表达式中的字符本身。