用线性相关性输入缺失值的代码

时间:2019-04-10 10:54:30

标签: r tidyverse base

我有一个data.frame,每周数据如下:

structure(list(date = structure(1:9, .Label = c("2017-01-01", 
"2017-01-08", "2017-01-15", "2017-01-22", "2017-01-29", "2017-02-05", 
"2017-02-12", "2017-02-19", "2017-02-26"), class = "factor"), 
    value = c("6", "5", "5", "5", "5", "5", "6", "8", "10")), row.names = c(NA, 
-9L), class = "data.frame")

现在,我想通过平滑处理来计算每日数据,该平滑处理使值每天线性变化,变化量等于每周变化的七分之一。因此,预期输出为:

structure(list(date = structure(c(17167, 17168, 17169, 17170, 
17171, 17172, 17173, 17174, 17175, 17176, 17177, 17178, 17179, 
17180, 17181, 17182, 17183, 17184, 17185, 17186, 17187, 17188, 
17189, 17190, 17191, 17192, 17193, 17194, 17195, 17196, 17197, 
17198, 17199, 17200, 17201, 17202, 17203, 17204, 17205, 17206, 
17207, 17208, 17209, 17210, 17211, 17212, 17213, 17214, 17215, 
17216, 17217, 17218, 17219, 17220, 17221, 17222, 17223, 17224, 
17225), class = "Date"), value = c(6, 5.857, 5.714, 5.571, 5.429, 
5.286, 5.143, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5.143, 5.286, 5.429, 5.571, 
5.714, 5.857, 6, 6.286, 6.571, 6.857, 7.143, 7.429, 7.714, 8, 
8.286, 8.571, 8.857, 9.143, 9.429, 9.714, 10, 8.57, 7.14)), row.names = c(NA, 
-59L), class = c("tbl_df", "tbl", "data.frame"))

请注意,最后两个日期不在从第一个数据帧开始的时间范围内,并且由于从最近观察到的值(10)到0计算得出的差异,它们减少了(10-0)/7。

如何获得预期的输出?

1 个答案:

答案 0 :(得分:2)

这有帮助吗?

library(tidyverse)
library(lubridate)
#> 
#> Attache Paket: 'lubridate'
#> The following object is masked from 'package:base':
#> 
#>     date
library(padr)

mydf<- data.frame(stringsAsFactors=FALSE,
          index = c(1, 2, 3, 4, 5, 6, 7, 8, 9),
          date = c("01.01.2017", "08.01.2017", "15.01.2017", "22.01.2017",
                 "29.01.2017", "05.02.2017", "12.02.2017", "19.02.2017",
                 "26.02.2017"),
          value = c(6, 5, 5, 5, 5, 5, 6, 8, 10)
)


mydf %>% 
  mutate(date=lubridate::dmy(date)) %>% 
  pad(.,interval="day", end_val=lubridate::dmy("28.02.2017")) %>% 
  mutate(value2=approx(date,value,date)$y)
#>    index       date value    value2
#> 1      1 2017-01-01     6  6.000000
#> 2     NA 2017-01-02    NA  5.857143
#> 3     NA 2017-01-03    NA  5.714286
#> 4     NA 2017-01-04    NA  5.571429
#> 5     NA 2017-01-05    NA  5.428571
#> 6     NA 2017-01-06    NA  5.285714
#> 7     NA 2017-01-07    NA  5.142857
#> 8      2 2017-01-08     5  5.000000
#> 9     NA 2017-01-09    NA  5.000000
#> 10    NA 2017-01-10    NA  5.000000
#> 11    NA 2017-01-11    NA  5.000000
#> 12    NA 2017-01-12    NA  5.000000
#> 13    NA 2017-01-13    NA  5.000000
#> 14    NA 2017-01-14    NA  5.000000
#> 15     3 2017-01-15     5  5.000000
#> 16    NA 2017-01-16    NA  5.000000
#> 17    NA 2017-01-17    NA  5.000000
#> 18    NA 2017-01-18    NA  5.000000
#> 19    NA 2017-01-19    NA  5.000000
#> 20    NA 2017-01-20    NA  5.000000
#> 21    NA 2017-01-21    NA  5.000000
#> 22     4 2017-01-22     5  5.000000
#> 23    NA 2017-01-23    NA  5.000000
#> 24    NA 2017-01-24    NA  5.000000
#> 25    NA 2017-01-25    NA  5.000000
#> 26    NA 2017-01-26    NA  5.000000
#> 27    NA 2017-01-27    NA  5.000000
#> 28    NA 2017-01-28    NA  5.000000
#> 29     5 2017-01-29     5  5.000000
#> 30    NA 2017-01-30    NA  5.000000
#> 31    NA 2017-01-31    NA  5.000000
#> 32    NA 2017-02-01    NA  5.000000
#> 33    NA 2017-02-02    NA  5.000000
#> 34    NA 2017-02-03    NA  5.000000
#> 35    NA 2017-02-04    NA  5.000000
#> 36     6 2017-02-05     5  5.000000
#> 37    NA 2017-02-06    NA  5.142857
#> 38    NA 2017-02-07    NA  5.285714
#> 39    NA 2017-02-08    NA  5.428571
#> 40    NA 2017-02-09    NA  5.571429
#> 41    NA 2017-02-10    NA  5.714286
#> 42    NA 2017-02-11    NA  5.857143
#> 43     7 2017-02-12     6  6.000000
#> 44    NA 2017-02-13    NA  6.285714
#> 45    NA 2017-02-14    NA  6.571429
#> 46    NA 2017-02-15    NA  6.857143
#> 47    NA 2017-02-16    NA  7.142857
#> 48    NA 2017-02-17    NA  7.428571
#> 49    NA 2017-02-18    NA  7.714286
#> 50     8 2017-02-19     8  8.000000
#> 51    NA 2017-02-20    NA  8.285714
#> 52    NA 2017-02-21    NA  8.571429
#> 53    NA 2017-02-22    NA  8.857143
#> 54    NA 2017-02-23    NA  9.142857
#> 55    NA 2017-02-24    NA  9.428571
#> 56    NA 2017-02-25    NA  9.714286
#> 57     9 2017-02-26    10 10.000000

编辑版本中包含了jakes评论:

mydf <- mydf %>% 
  mutate(date=lubridate::dmy(date))

end_row <- tibble(date=max(mydf$date)+7,value=0)

bind_rows(mydf, end_row) %>% 
  pad(.,interval="day") %>%  
  mutate(value2=approx(date,value,date)$y) %>% 
  filter(date<dmy("28.02.2017")+1)