我有一个看起来像这样的数据框:
<textarea id='mensagem' style="height:200px;margin:0;padding:0;vertical-align:top;" class="input100" type="text" name="mensagem">
实际上,我的数据框是-1000万行。并具有两倍的列。 数据由显示客户行为的网站数据组成。
我想做什么
为了分析客户在到达被跟踪的第一页之前在网站上的停留时间,我想在每组上方添加一行,以复制列中第一行的值:
但是为列提供新值:
df = pd.DataFrame({'VisitorID': [1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000],
'EpochTime': [1554888560, 1554888560, 1554888560, 1554888560, 1554888560, 1521333510, 1521333510, 1521333510],
'HitTime': [1400, 5340, 7034, 11034, 13059, 990, 4149, 6450],
'HitNumber':[23, 54, 55, 65, 110, 14, 29, 54],
'PagePath':['orders/details', 'orders/payment', 'orders/afterpayment', 'orders/myorders', 'customercare', 'orders/details', 'orders/payment', 'orders/myorders']})
print(df)
VisitorID EpochTime HitTime HitNumber PagePath
0 1000 1554888560 1400 23 orders/details
1 1000 1554888560 5340 54 orders/payment
2 1000 1554888560 7034 55 orders/afterpayment
3 1000 1554888560 11034 65 orders/myorders
4 1000 1554888560 13059 110 customercare
5 1000 1521333510 990 14 orders/details
6 1000 1521333510 4149 29 orders/payment
7 1000 1521333510 6450 54 orders/myorders
信息:Home
+ VisitorID
的组合使一个组唯一。
我通过以下代码实现了这一目标,但是运行大约需要5分钟,我认为应该有一种更快的方法:
EpochTime
lst = []
for x, y in df.groupby(['VisitorID', 'EpochTime']):
lst.append(y.iloc[:1])
df_first = pd.concat(lst, ignore_index=True)
df_first['HitTime'] = 0.0
df_first['HitNumber'] = 0.0
df_first['PagePath'] = 'Home'
print(df_first)
VisitorID EpochTime HitTime HitNumber PagePath
0 1000 1521333510 0.0 0.0 Home
1 1000 1554888560 0.0 0.0 Home
df_final = pd.concat([df, df_first], ignore_index=True).sort_values(['VisitorID', 'EpochTime', 'HitNumber']).reset_index(drop=True)
print(df_final)
VisitorID EpochTime HitTime HitNumber PagePath
0 1000 1521333510 0.0 0.0 Home
1 1000 1521333510 990.0 14.0 orders/details
2 1000 1521333510 4149.0 29.0 orders/payment
3 1000 1521333510 6450.0 54.0 orders/myorders
4 1000 1554888560 0.0 0.0 Home
5 1000 1554888560 1400.0 23.0 orders/details
6 1000 1554888560 5340.0 54.0 orders/payment
7 1000 1554888560 7034.0 55.0 orders/afterpayment
8 1000 1554888560 11034.0 65.0 orders/myorders
9 1000 1554888560 13059.0 110.0 customercare
的输出是我的预期输出。
问题是,我可以更有效地做到这一点吗?
答案 0 :(得分:2)
您可以使用DataFrame.drop_duplicates
来提高性能:
d = {'HitTime':0,'HitNumber':0,'PagePath':'Home'}
df_first = df.drop_duplicates(['VisitorID', 'EpochTime']).assign(**d)
df_final = (pd.concat([df, df_first], ignore_index=True)
.sort_values(['VisitorID', 'EpochTime', 'HitNumber'])
.reset_index(drop=True))
print(df_final)
VisitorID EpochTime HitTime HitNumber PagePath
0 1000 1521333510 0 0 Home
1 1000 1521333510 990 14 orders/details
2 1000 1521333510 4149 29 orders/payment
3 1000 1521333510 6450 54 orders/myorders
4 1000 1554888560 0 0 Home
5 1000 1554888560 1400 23 orders/details
6 1000 1554888560 5340 54 orders/payment
7 1000 1554888560 7034 55 orders/afterpayment
8 1000 1554888560 11034 65 orders/myorders
9 1000 1554888560 13059 110 customercare
另一个想法是通过减去索引并最后按索引排序来更改df_first
中的索引值:
d = {'HitTime':0,'HitNumber':0,'PagePath':'Home'}
df_first = df.drop_duplicates(['VisitorID', 'EpochTime']).assign(**d)
df_first.index -= .5
df_final = pd.concat([df, df_first]).sort_index().reset_index(drop=True)
print(df_final)
VisitorID EpochTime HitTime HitNumber PagePath
0 1000 1554888560 0 0 Home
1 1000 1554888560 1400 23 orders/details
2 1000 1554888560 5340 54 orders/payment
3 1000 1554888560 7034 55 orders/afterpayment
4 1000 1554888560 11034 65 orders/myorders
5 1000 1554888560 13059 110 customercare
6 1000 1521333510 0 0 Home
7 1000 1521333510 990 14 orders/details
8 1000 1521333510 4149 29 orders/payment
9 1000 1521333510 6450 54 orders/myorders