我将recursive feature elimination with cross validation (rfecv)
用作randomforest classifier
的功能选择器,如下所示。
X = df[[my_features]] #all my features
y = df['gold_standard'] #labels
clf = RandomForestClassifier(random_state = 42, class_weight="balanced")
rfecv = RFECV(estimator=clf, step=1, cv=StratifiedKFold(10), scoring='roc_auc')
rfecv.fit(X,y)
print("Optimal number of features : %d" % rfecv.n_features_)
features=list(X.columns[rfecv.support_])
我还按照以下方式执行GridSearchCV
,以按如下方式调整RandomForestClassifier
的超参数。
X = df[[my_features]] #all my features
y = df['gold_standard'] #labels
x_train, x_test, y_train, y_test = train_test_split(X, y, random_state=0)
rfc = RandomForestClassifier(random_state=42, class_weight = 'balanced')
param_grid = {
'n_estimators': [200, 500],
'max_features': ['auto', 'sqrt', 'log2'],
'max_depth' : [4,5,6,7,8],
'criterion' :['gini', 'entropy']
}
k_fold = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)
CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= k_fold, scoring = 'roc_auc')
CV_rfc.fit(x_train, y_train)
print(CV_rfc.best_params_)
print(CV_rfc.best_score_)
print(CV_rfc.best_estimator_)
pred = CV_rfc.predict_proba(x_test)[:,1]
print(roc_auc_score(y_test, pred))
但是,我不清楚如何将功能选择(rfecv
)与GridSearchCV
合并。
编辑:
当我运行@Gambit建议的答案时,出现以下错误:
ValueError: Invalid parameter criterion for estimator RFECV(cv=StratifiedKFold(n_splits=10, random_state=None, shuffle=False),
estimator=RandomForestClassifier(bootstrap=True, class_weight='balanced',
criterion='gini', max_depth=None, max_features='auto',
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators='warn', n_jobs=None, oob_score=False,
random_state=42, verbose=0, warm_start=False),
min_features_to_select=1, n_jobs=None, scoring='roc_auc', step=1,
verbose=0). Check the list of available parameters with `estimator.get_params().keys()`.
我可以通过使用estimator__
参数列表中的param_grid
解决以上问题。
我现在的问题是如何使用x_test
中选定的功能和参数来验证模型是否可以很好地处理看不见的数据。如何获得best features
并与optimal hyperparameters
一起训练?
很高兴在需要时提供更多详细信息。
答案 0 :(得分:2)
您只需要将递归特征消除估计器直接传递到class App extends React.Component {
constructor(props) {
super(props);
this.state = {
isLoading: true,
submitSuccess: false
};
}
onClick = () => {
console.log("click");
this.setState({
isLoading: false,
submitSuccess: true
});
};
render() {
return (
<div className="App">
<button onClick={this.onClick}>click</button>
{this.state.isLoading ? (
<p>loading...</p>
) : this.state.submitSuccess ? (
<p>sucess!</p>
) : (
<p>are you sure?</p>
)}
</div>
);
}
}
对象中。这样的事情应该起作用
GridSearchCV
答案 1 :(得分:2)
您可以通过使用'estimator__'
前缀要传递给估计量的参数名称来完成您想要的操作。
X = df[[my_features]]
y = df[gold_standard]
clf = RandomForestClassifier(random_state=0, class_weight="balanced")
rfecv = RFECV(estimator=clf, step=1, cv=StratifiedKFold(3), scoring='roc_auc')
param_grid = {
'estimator__n_estimators': [200, 500],
'estimator__max_features': ['auto', 'sqrt', 'log2'],
'estimator__max_depth' : [4,5,6,7,8],
'estimator__criterion' :['gini', 'entropy']
}
k_fold = StratifiedKFold(n_splits=3, shuffle=True, random_state=0)
CV_rfc = GridSearchCV(estimator=rfecv, param_grid=param_grid, cv= k_fold, scoring = 'roc_auc')
X_train, X_test, y_train, y_test = train_test_split(X, y)
CV_rfc.fit(X_train, y_train)
我制作的假数据的输出:
{'estimator__n_estimators': 200, 'estimator__max_depth': 6, 'estimator__criterion': 'entropy', 'estimator__max_features': 'auto'}
0.5653035605690997
RFECV(cv=StratifiedKFold(n_splits=3, random_state=None, shuffle=False),
estimator=RandomForestClassifier(bootstrap=True, class_weight='balanced',
criterion='entropy', max_depth=6, max_features='auto',
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=200, n_jobs=None, oob_score=False, random_state=0,
verbose=0, warm_start=False),
min_features_to_select=1, n_jobs=None, scoring='roc_auc', step=1,
verbose=0)
答案 2 :(得分:1)
基本上,您希望在选择特征后使用递归特征消除(带有交叉验证)来微调分类器的超参数(带有交叉验证)。
管道对象正是用于组装数据转换和应用估计器的目的。
也许您可以使用其他模型(GradientBoostingClassifier
等进行最终分类)。可以通过以下方法实现:
from sklearn.datasets import load_breast_cancer
from sklearn.feature_selection import RFECV
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
from sklearn.pipeline import Pipeline
#this is the classifier used for feature selection
clf_featr_sele = RandomForestClassifier(n_estimators=30, random_state = 42, class_weight="balanced")
rfecv = RFECV(estimator=clf_featr_sele, step=1, cv=5, scoring = 'roc_auc')
#you can have different classifier for your final classifier
clf = RandomForestClassifier(n_estimators=10, random_state = 42, class_weight="balanced")
CV_rfc = GridSearchCV(clf, param_grid={'max_depth':[2,3]}, cv= 5, scoring = 'roc_auc')
pipeline = Pipeline([('feature_sele',rfecv),('clf_cv',CV_rfc)])
pipeline.fit(X_train, y_train)
pipeline.predict(X_test)
现在,您可以将此管道(包括功能选择)应用于测试数据。