我正在尝试用python编写函数。但是,它始终返回错误“无法从重复的轴重新索引”。我一直无法弄清楚为什么我会收到错误消息。
$ kubectl get pods --namespace kube-system
NAME READY STATUS RESTARTS AGE
coredns-fb8b8dccf-9z8v5 1/1 Running 3 6h
coredns-fb8b8dccf-wdtpl 1/1 Running 3 6h
etcd-minikube 1/1 Running 1 6h
kube-addon-manager-minikube 1/1 Running 1 6h
kube-apiserver-minikube 1/1 Running 1 6h
kube-controller-manager-minikube 1/1 Running 1 6h
kube-proxy-m4whq 1/1 Running 0 2h
kube-scheduler-minikube 1/1 Running 1 6h
kubernetes-dashboard-79dd6bfc48-5z9cx 1/1 Running 3 6h
storage-provisioner 1/1 Running 3 6h
tiller-deploy-8458f6c667-wmv62 1/1 Running 1 4h
我认为给出错误的代码行是
db.collection.find(
{$and:[
{$and:[{"position.x":{$eq:30}},{"position.y":{$eq:40}}]},
{$and:[{"position.x":{$eq:40}},{"position.y":{$eq:50}}]}
]}
)
我在这里要做的是确保在随机样本选择中出现不超过3个相同的memberid。
一旦我们删除了这一行代码,该函数就会起作用。我们尝试使用
修复它def get_match_digital(Demo, Imp, imp_cap):
df102 = []
# Loop for running a simulation n times
d1 = df_new
impcap = imp_cap
for x in range(1):
# Randomly selecting n number of random rows which would be no. of impressions in this case
f2 = d1.sample(Imp)
# applying frequency capping after sample selection
d = f2.assign(rn=f2.sort_values(['MemberId'], ascending=False).groupby(['MemberId']).cumcount() + 1).query('rn <= 3')
a = 20000
df42 = []
for y in range(10):
df = f2.iloc[:a]
df32 = df.loc[(df['ageGroup25_54'] == Demo)].MemberId.nunique()
a = a + a
df42.append(df32)
df102.append(df42)
transposed2 = list(zip(*df102))
avg2 = lambda items: float(sum(items)) / len(items)
averages2 = list(map(avg2, transposed2))
columns = ['reach']
final = pd.DataFrame(columns=columns)
final = final.assign(reach=averages2)
final['Imp'] = 20000 * (final.index.values + 1)
final['reachP'] = round(((final['reach'] / Imp) * 100), 2)
return final
并通过重置索引
d = f2.assign(rn=f2.sort_values(['MemberId'], ascending=False).groupby(['MemberId']).cumcount() + 1).query('rn <= 3')
我希望有人可以帮助我弄清楚为什么我得到此错误并帮助解决问题。
非常感谢!