我正在尝试创建最佳轮班时间表,在该时间表中将员工分配到轮班时间。输出应旨在花费最少的钱。棘手的部分是我需要考虑特定的约束。这些是:
1) At any given time period, you must meet the minimum staffing requirements
2) A person has a minimum and maximum amount of hours they can do
3) An employee can only be scheduled to work within their available hours
4) A person can only work one shift per day
staff_availability df
包含['Person']
中可供选择的员工,他们可以工作的最低-最高工作时间['MinHours']
-['MaxHours']
,获得的薪水{{1 }}和可用性,以小时['HourlyWage']
和15分钟细分['Availability_Hr']
表示。
注意:不需要,不需要分配可用的员工轮班。他们只是可以这样做。
['Availability_15min_Seg']
包含一天中的时间staffing_requirements df
和在此期间所需的工作人员['Time']
。
该脚本返回一个['People']
df
,其中显示每个时间点有多少员工可用。因此,'availability_per_member'
指示有待调度,而1
指示不可用。然后,它旨在分配移位时间,同时使用0
来考虑约束。
我正在获得输出,但轮班时间不适用于连续的员工。
pulp
下面是前两个小时(8个15分钟的时隙)的输出。问题是这些转变不是连续的。在第一个import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as dates
import pulp
staffing_requirements = pd.DataFrame({
'Time' : ['0/1/1900 8:00:00','0/1/1900 9:59:00','0/1/1900 10:00:00','0/1/1900 12:29:00','0/1/1900 12:30:00','0/1/1900 13:00:00','0/1/1900 13:02:00','0/1/1900 13:15:00','0/1/1900 13:20:00','0/1/1900 18:10:00','0/1/1900 18:15:00','0/1/1900 18:20:00','0/1/1900 18:25:00','0/1/1900 18:45:00','0/1/1900 18:50:00','0/1/1900 19:05:00','0/1/1900 19:07:00','0/1/1900 21:57:00','0/1/1900 22:00:00','0/1/1900 22:30:00','0/1/1900 22:35:00','1/1/1900 3:00:00','1/1/1900 3:05:00','1/1/1900 3:20:00','1/1/1900 3:25:00'],
'People' : [1,1,2,2,3,3,2,2,3,3,4,4,3,3,2,2,3,3,4,4,3,3,2,2,1],
})
staff_availability = pd.DataFrame({
'Person' : ['C1','C2','C3','C4','C5','C6','C7','C8','C9','C10','C11'],
'MinHours' : [3,3,3,3,3,3,3,3,3,3,3],
'MaxHours' : [10,10,10,10,10,10,10,10,10,10,10],
'HourlyWage' : [26,26,26,26,26,26,26,26,26,26,26],
'Availability_Hr' : ['8-18','8-18','8-18','9-18','9-18','9-18','12-1','12-1','17-3','17-3','17-3'],
'Availability_15min_Seg' : ['1-41','1-41','1-41','5-41','5-41','5-41','17-69','17-79','37-79','37-79','37-79'],
})
staffing_requirements['Time'] = ['/'.join([str(int(x.split('/')[0])+1)] + x.split('/')[1:]) for x in staffing_requirements['Time']]
staffing_requirements['Time'] = pd.to_datetime(staffing_requirements['Time'], format='%d/%m/%Y %H:%M:%S')
formatter = dates.DateFormatter('%Y-%m-%d %H:%M:%S')
# 15 Min
staffing_requirements = staffing_requirements.groupby(pd.Grouper(freq='15T',key='Time'))['People'].max().ffill()
staffing_requirements = staffing_requirements.reset_index(level=['Time'])
staffing_requirements.index = range(1, len(staffing_requirements) + 1)
staff_availability.set_index('Person')
staff_costs = staff_availability.set_index('Person')[['MinHours', 'MaxHours', 'HourlyWage']]
availability = staff_availability.set_index('Person')[['Availability_15min_Seg']]
availability[['first_15min', 'last_15min']] = availability['Availability_15min_Seg'].str.split('-', expand=True).astype(int)
availability_per_member = [pd.DataFrame(1, columns=[idx], index=range(row['first_15min'], row['last_15min']+1))
for idx, row in availability.iterrows()]
availability_per_member = pd.concat(availability_per_member, axis='columns').fillna(0).astype(int).stack()
availability_per_member.index.names = ['Timeslot', 'Person']
availability_per_member = (availability_per_member.to_frame()
.join(staff_costs[['HourlyWage']])
.rename(columns={0: 'Available'}))
''' Generate shift times based off availability '''
prob = pulp.LpProblem('CreateStaffing', pulp.LpMinimize) # Minimize costs
timeslots = staffing_requirements.index
persons = availability_per_member.index.levels[1]
# A member is either staffed or is not at a certain timeslot
staffed = pulp.LpVariable.dicts("staffed",
((timeslot, staffmember) for timeslot, staffmember
in availability_per_member.index),
lowBound=0,
cat='Binary')
# Objective = cost (= sum of hourly wages)
prob += pulp.lpSum(
[staffed[timeslot, staffmember] * availability_per_member.loc[(timeslot, staffmember), 'HourlyWage']
for timeslot, staffmember in availability_per_member.index]
)
# Staff the right number of people
for timeslot in timeslots:
prob += (sum([staffed[(timeslot, person)] for person in persons])
== staffing_requirements.loc[timeslot, 'People'])
# Do not staff unavailable persons
for timeslot in timeslots:
for person in persons:
if availability_per_member.loc[(timeslot, person), 'Available'] == 0:
prob += staffed[timeslot, person] == 0
# Do not underemploy people
for person in persons:
prob += (sum([staffed[(timeslot, person)] for timeslot in timeslots])
>= staff_costs.loc[person, 'MinHours']*4) # timeslot is 15 minutes => 4 timeslots = hour
# Do not overemploy people
for person in persons:
prob += (sum([staffed[(timeslot, person)] for timeslot in timeslots])
<= staff_costs.loc[person, 'MaxHours']*4) # timeslot is 15 minutes => 4 timeslots = hour
prob.solve()
print(pulp.LpStatus[prob.status])
output = []
for timeslot, staffmember in staffed:
var_output = {
'Timeslot': timeslot,
'Staffmember': staffmember,
'Staffed': staffed[(timeslot, staffmember)].varValue,
}
output.append(var_output)
output_df = pd.DataFrame.from_records(output)#.sort_values(['timeslot', 'staffmember'])
output_df.set_index(['Timeslot', 'Staffmember'], inplace=True)
if pulp.LpStatus[prob.status] == 'Optimal':
print(output_df)
时隙安排的员工主要不同。在最初的2小时内,我将有5个人开始。员工每天只能上班一次。
8
答案 0 :(得分:4)
注意:这是该问题早期版本的答案。
我认为求解器返回的解是正确的;每个人都在MinHours
中工作,他们只是不连续的。我运行了您的代码,然后说
for person in persons:
print("{}: {}".format(person, sum([staffed[(timeslot, person)].value() for timeslot in timeslots])))
并得到:
C1: 12.0
C2: 12.0
C3: 12.0
C4: 20.0
C5: 23.0
C6: 18.0
C7: 22.0
C8: 29.0
C9: 22.0
C10: 27.0
C11: 32.0
所以每个人至少要轮班工作12个小时,即3个小时。
如果您希望轮班是连续的(例如,一个人不能同时在插槽1和插槽3上工作),那么处理此问题的典型方法是使用一个决策变量,该变量说明每个员工什么时候开始轮班,而不是指定它们在每个时间段工作的变量。然后,引入一个类似a[j][t]
的参数,如果在插槽1
开始轮班的员工正在插槽j
工作,则该参数等于t
。从那里,您可以计算出谁在哪个时段工作。
将MinHours
设置为5时,该问题不可行的原因是,这迫使太多人在某些时间工作。例如,在时隙41之前必须有6个人完成轮班。这意味着在时隙41之前需要工作6 x 4 x 5 = 120人。但是在时隙1和41之间仅需要97人。 / p>
可以通过将“人员编制正确的人员数量”约束更改为>=
而不是==
来解决此问题,假设这对于人员编制系统是允许的。 (如果不是,那么您手中只有一个不可行的实例。)
(顺便说一句,您可能对Operations Research and Analytics上拟议的新Stack Exchange网站感兴趣。我们将在那边解决像这样的问题。:-))
答案 1 :(得分:2)
这是您修改后的问题的答案,即,如何添加要求每个员工连续工作的约束条件。
我建议您添加以下约束(以代数形式写在此处):
x[t+1,p] <= x[t,p] + (1 - (1/T) * sum_{s=1}^{t-1} x[s,p]) for all p, for all t < T
其中x
是您的staffed
变量(为简洁起见,在此处写为x
),t
是时间索引,T
是时间数期间,p
是员工索引。
约束的逻辑是:如果x[t,p] = 0
(员工不在t
期间工作)并且x[s,p] = 1
代表 any s < t
(该员工曾在以前的任何时期工作),那么x[t+1,p]
必须= 0
(该员工不能在t+1
时期工作。因此,一旦该员工停止工作,他们将-start。请注意,如果每个x[t,p] = 1
是x[s,p] = 0
或 s < t
,则x[t+1,p]
可以等于1
。
这是我在pulp
中对该约束的实现:
# If an employee works and then stops, they can't start again
num_slots = max(timeslots)
for timeslot in timeslots:
if timeslot < num_slots:
for person in persons:
prob += staffed[timeslot+1, person] <= staffed[timeslot, person] + \
(1 - (1./num_slots) *
sum([staffed[(s, person)] for s in timeslots if s < timeslot]))
我运行模型并得到:
Optimal
Staffed
Timeslot Staffmember
1 C2 1.0
2 C2 1.0
3 C2 1.0
4 C2 1.0
5 C2 1.0
6 C2 1.0
7 C2 1.0
8 C2 1.0
9 C2 1.0
C6 1.0
10 C2 1.0
C6 1.0
11 C2 1.0
C6 1.0
12 C2 1.0
C6 1.0
13 C3 1.0
C6 1.0
14 C3 1.0
C6 1.0
等因此,员工在连续的时间段工作。
请注意,新约束会稍微放慢模型的速度。它仍然可以在不到30秒的时间内解决。但是,如果要解决更大的实例,则可能必须重新考虑约束条件。