确定人员分配-Python

时间:2019-04-10 03:09:38

标签: python pandas linear-programming pulp integer-programming

我正在尝试创建最佳轮班时间表,在该时间表中将员工分配到轮班时间。输出应旨在花费最少的钱。棘手的部分是我需要考虑特定的约束。这些是:

1) At any given time period, you must meet the minimum staffing requirements
2) A person has a minimum and maximum amount of hours they can do
3) An employee can only be scheduled to work within their available hours
4) A person can only work one shift per day

staff_availability df包含['Person']中可供选择的员工,他们可以工作的最低-最高工作时间['MinHours']-['MaxHours'],获得的薪水{{1 }}和可用性,以小时['HourlyWage']和15分钟细分['Availability_Hr']表示。

注意:不需要,不需要分配可用的员工轮班。他们只是可以这样做。

['Availability_15min_Seg']包含一天中的时间staffing_requirements df和在此期间所需的工作人员['Time']

该脚本返回一个['People'] df,其中显示每个时间点有多少员工可用。因此,'availability_per_member'指示有待调度,而1指示不可用。然后,它旨在分配移位时间,同时使用0来考虑约束。

我正在获得输出,但轮班时间不适用于连续的员工。

我不能满足第四个约束,因为员工每天只能轮班工作一次

pulp

下面是前两个小时(8个15分钟的时隙)的输出。问题是这些转变不是连续的。在第一个import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as dates import pulp staffing_requirements = pd.DataFrame({ 'Time' : ['0/1/1900 8:00:00','0/1/1900 9:59:00','0/1/1900 10:00:00','0/1/1900 12:29:00','0/1/1900 12:30:00','0/1/1900 13:00:00','0/1/1900 13:02:00','0/1/1900 13:15:00','0/1/1900 13:20:00','0/1/1900 18:10:00','0/1/1900 18:15:00','0/1/1900 18:20:00','0/1/1900 18:25:00','0/1/1900 18:45:00','0/1/1900 18:50:00','0/1/1900 19:05:00','0/1/1900 19:07:00','0/1/1900 21:57:00','0/1/1900 22:00:00','0/1/1900 22:30:00','0/1/1900 22:35:00','1/1/1900 3:00:00','1/1/1900 3:05:00','1/1/1900 3:20:00','1/1/1900 3:25:00'], 'People' : [1,1,2,2,3,3,2,2,3,3,4,4,3,3,2,2,3,3,4,4,3,3,2,2,1], }) staff_availability = pd.DataFrame({ 'Person' : ['C1','C2','C3','C4','C5','C6','C7','C8','C9','C10','C11'], 'MinHours' : [3,3,3,3,3,3,3,3,3,3,3], 'MaxHours' : [10,10,10,10,10,10,10,10,10,10,10], 'HourlyWage' : [26,26,26,26,26,26,26,26,26,26,26], 'Availability_Hr' : ['8-18','8-18','8-18','9-18','9-18','9-18','12-1','12-1','17-3','17-3','17-3'], 'Availability_15min_Seg' : ['1-41','1-41','1-41','5-41','5-41','5-41','17-69','17-79','37-79','37-79','37-79'], }) staffing_requirements['Time'] = ['/'.join([str(int(x.split('/')[0])+1)] + x.split('/')[1:]) for x in staffing_requirements['Time']] staffing_requirements['Time'] = pd.to_datetime(staffing_requirements['Time'], format='%d/%m/%Y %H:%M:%S') formatter = dates.DateFormatter('%Y-%m-%d %H:%M:%S') # 15 Min staffing_requirements = staffing_requirements.groupby(pd.Grouper(freq='15T',key='Time'))['People'].max().ffill() staffing_requirements = staffing_requirements.reset_index(level=['Time']) staffing_requirements.index = range(1, len(staffing_requirements) + 1) staff_availability.set_index('Person') staff_costs = staff_availability.set_index('Person')[['MinHours', 'MaxHours', 'HourlyWage']] availability = staff_availability.set_index('Person')[['Availability_15min_Seg']] availability[['first_15min', 'last_15min']] = availability['Availability_15min_Seg'].str.split('-', expand=True).astype(int) availability_per_member = [pd.DataFrame(1, columns=[idx], index=range(row['first_15min'], row['last_15min']+1)) for idx, row in availability.iterrows()] availability_per_member = pd.concat(availability_per_member, axis='columns').fillna(0).astype(int).stack() availability_per_member.index.names = ['Timeslot', 'Person'] availability_per_member = (availability_per_member.to_frame() .join(staff_costs[['HourlyWage']]) .rename(columns={0: 'Available'})) ''' Generate shift times based off availability ''' prob = pulp.LpProblem('CreateStaffing', pulp.LpMinimize) # Minimize costs timeslots = staffing_requirements.index persons = availability_per_member.index.levels[1] # A member is either staffed or is not at a certain timeslot staffed = pulp.LpVariable.dicts("staffed", ((timeslot, staffmember) for timeslot, staffmember in availability_per_member.index), lowBound=0, cat='Binary') # Objective = cost (= sum of hourly wages) prob += pulp.lpSum( [staffed[timeslot, staffmember] * availability_per_member.loc[(timeslot, staffmember), 'HourlyWage'] for timeslot, staffmember in availability_per_member.index] ) # Staff the right number of people for timeslot in timeslots: prob += (sum([staffed[(timeslot, person)] for person in persons]) == staffing_requirements.loc[timeslot, 'People']) # Do not staff unavailable persons for timeslot in timeslots: for person in persons: if availability_per_member.loc[(timeslot, person), 'Available'] == 0: prob += staffed[timeslot, person] == 0 # Do not underemploy people for person in persons: prob += (sum([staffed[(timeslot, person)] for timeslot in timeslots]) >= staff_costs.loc[person, 'MinHours']*4) # timeslot is 15 minutes => 4 timeslots = hour # Do not overemploy people for person in persons: prob += (sum([staffed[(timeslot, person)] for timeslot in timeslots]) <= staff_costs.loc[person, 'MaxHours']*4) # timeslot is 15 minutes => 4 timeslots = hour prob.solve() print(pulp.LpStatus[prob.status]) output = [] for timeslot, staffmember in staffed: var_output = { 'Timeslot': timeslot, 'Staffmember': staffmember, 'Staffed': staffed[(timeslot, staffmember)].varValue, } output.append(var_output) output_df = pd.DataFrame.from_records(output)#.sort_values(['timeslot', 'staffmember']) output_df.set_index(['Timeslot', 'Staffmember'], inplace=True) if pulp.LpStatus[prob.status] == 'Optimal': print(output_df) 时隙安排的员工主要不同。在最初的2小时内,我将有5个人开始。员工每天只能上班一次。

8

2 个答案:

答案 0 :(得分:4)

注意:这是该问题早期版本的答案。


我认为求解器返回的解是正确的;每个人都在MinHours中工作,他们只是不连续的。我运行了您的代码,然后说

for person in persons:
    print("{}: {}".format(person, sum([staffed[(timeslot, person)].value() for timeslot in timeslots])))

并得到:

C1: 12.0
C2: 12.0
C3: 12.0
C4: 20.0
C5: 23.0
C6: 18.0
C7: 22.0
C8: 29.0
C9: 22.0
C10: 27.0
C11: 32.0

所以每个人至少要轮班工作12个小时,即3个小时。

如果您希望轮班是连续的(例如,一个人不能同时在插槽1和插槽3上工作),那么处理此问题的典型方法是使用一个决策变量,该变量说明每个员工什么时候开始轮班,而不是指定它们在每个时间段工作的变量。然后,引入一个类似a[j][t]的参数,如果在插槽1开始轮班的员工正在插槽j工作,则该参数等于t。从那里,您可以计算出谁在哪个时段工作。

MinHours设置为5时,该问题不可行的原因是,这迫使太多人在某些时间工作。例如,在时隙41之前必须有6个人完成轮班。这意味着在时隙41之前需要工作6 x 4 x 5 = 120人。但是在时隙1和41之间仅需要97人。 / p>

可以通过将“人员编制正确的人员数量”约束更改为>=而不是==来解决此问题,假设这对于人员编制系统是允许的。 (如果不是,那么您手中只有一个不可行的实例。)

(顺便说一句,您可能对Operations Research and Analytics上拟议的新Stack Exchange网站感兴趣。我们将在那边解决像这样的问题。:-))

答案 1 :(得分:2)

这是您修改后的问题的答案,即,如何添加要求每个员工连续工作的约束条件。

我建议您添加以下约束(以代数形式写在此处):

x[t+1,p] <= x[t,p] + (1 - (1/T) * sum_{s=1}^{t-1} x[s,p])    for all p, for all t < T

其中x是您的staffed变量(为简洁起见,在此处写为x),t是时间索引,T是时间数期间,p是员工索引。

约束的逻辑是:如果x[t,p] = 0(员工不在t期间工作)并且x[s,p] = 1代表 any s < t (该员工曾在以前的任何时期工作),那么x[t+1,p]必须= 0(该员工不能在t+1时期工作。因此,一旦该员工停止工作,他们将-start。请注意,如果每个x[t,p] = 1x[s,p] = 0 s < t,则x[t+1,p]可以等于1

这是我在pulp中对该约束的实现:

# If an employee works and then stops, they can't start again
num_slots = max(timeslots)
for timeslot in timeslots:
    if timeslot < num_slots:
        for person in persons:
            prob += staffed[timeslot+1, person] <= staffed[timeslot, person] + \
                (1 - (1./num_slots) *
                 sum([staffed[(s, person)] for s in timeslots if s < timeslot]))

我运行模型并得到:

Optimal
                      Staffed
Timeslot Staffmember         
1        C2               1.0
2        C2               1.0
3        C2               1.0
4        C2               1.0
5        C2               1.0
6        C2               1.0
7        C2               1.0
8        C2               1.0
9        C2               1.0
         C6               1.0
10       C2               1.0
         C6               1.0
11       C2               1.0
         C6               1.0
12       C2               1.0
         C6               1.0
13       C3               1.0
         C6               1.0
14       C3               1.0
         C6               1.0

等因此,员工在连续的时间段工作。

请注意,新约束会稍微放慢模型的速度。它仍然可以在不到30秒的时间内解决。但是,如果要解决更大的实例,则可能必须重新考虑约束条件。