布尔值(p ^ q)和(p!= q)之间有有用的区别吗?

时间:2019-04-09 17:33:24

标签: java performance

Java有两种检查两个布尔值是否不同的方法。您可以将它们与!=^(异或)进行比较。当然,这两个运算符在所有情况下都会产生相同的结果。仍然有必要将它们都包括在内,例如在What's the difference between XOR and NOT-EQUAL-TO?中进行了讨论。对于开发人员而言,根据上下文选择一个相对于另一个更有意义-有时“正好是这些布尔值之一”读起来更好,而有时“这两个布尔值不同”则可以更好地传达意图。因此,也许应该使用哪个来解决口味和风格问题。

令我惊讶的是javac并没有完全一样对待它们!考虑此类:

class Test {
  public boolean xor(boolean p, boolean q) {
    return p ^ q;
  }
  public boolean inequal(boolean p, boolean q) {
    return p != q;
  }
}

显然,这两种方法具有相同的可见行为。但是它们具有不同的字节码:

$ javap -c Test
Compiled from "Test.java"
class Test {
  Test();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return

  public boolean xor(boolean, boolean);
    Code:
       0: iload_1
       1: iload_2
       2: ixor
       3: ireturn

  public boolean inequal(boolean, boolean);
    Code:
       0: iload_1
       1: iload_2
       2: if_icmpeq     9
       5: iconst_1
       6: goto          10
       9: iconst_0
      10: ireturn
}

如果我不得不猜测,我会说xor的性能更好,因为它只返回比较的结果;增加跳跃和额外的负担似乎是浪费的工作。但是,我没有猜测,而是使用Clojure的“标准”基准测试工具对这两种方法的数十亿次调用进行了基准测试。足够接近,虽然xor看起来快一点,但我对统计数据的了解还不够,不能说结果是否有意义:

user=> (let [t (Test.)] (bench (.xor t true false)))
Evaluation count : 4681301040 in 60 samples of 78021684 calls.
             Execution time mean : 4.273428 ns
    Execution time std-deviation : 0.168423 ns
   Execution time lower quantile : 4.044192 ns ( 2.5%)
   Execution time upper quantile : 4.649796 ns (97.5%)
                   Overhead used : 8.723577 ns

Found 2 outliers in 60 samples (3.3333 %)
    low-severe   2 (3.3333 %)
 Variance from outliers : 25.4745 % Variance is moderately inflated by outliers
user=> (let [t (Test.)] (bench (.inequal t true false)))
Evaluation count : 4570766220 in 60 samples of 76179437 calls.
             Execution time mean : 4.492847 ns
    Execution time std-deviation : 0.162946 ns
   Execution time lower quantile : 4.282077 ns ( 2.5%)
   Execution time upper quantile : 4.813433 ns (97.5%)
                   Overhead used : 8.723577 ns

Found 2 outliers in 60 samples (3.3333 %)
    low-severe   2 (3.3333 %)
 Variance from outliers : 22.2554 % Variance is moderately inflated by outliers

出于性能方面的考虑,是否有某些理由更喜欢编写一个而不是另一个?在某些情况下,其实现方式的差异使一种方法比另一种方法更合适?或者,有人知道为什么javac如此不同地实现这两个相同的操作吗?

1 当然,我不会鲁ck地使用此信息进行微优化。我很好奇这一切如何工作。

1 个答案:

答案 0 :(得分:2)

好吧,我将提供CPU如何立即翻译并更新帖子,但是与此同时,您看到的是waaaay差异太小而不必关心。

Java中的

字节代码并不表示方法将执行(或不执行)的速度,有两个JIT编译器一旦足够热,将使此方法看起来完全不同。同样,javac进行编译代码后几乎不会进行任何优化,真正的优化来自JIT

为此,我使用JMH进行了一些测试,这些测试仅使用C1编译器,或者使用C2或完全不使用GraalVM替换JIT。 ..(后面有很多测试代码,您可以跳过它而只看结果,这是通过jdk-12 btw完成的)。这段代码使用JMH-在Java技术领域中的微基准测试(众所周知,如果手工完成,容易出错)。

@Warmup(iterations = 10)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Measurement(iterations = 2, time = 2, timeUnit = TimeUnit.SECONDS)
public class BooleanCompare {

    public static void main(String[] args) throws Exception {
        Options opt = new OptionsBuilder()
            .include(BooleanCompare.class.getName())
            .build();

        new Runner(opt).run();
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @Fork(1)
    public boolean xor(BooleanExecutionPlan plan) {
        return plan.booleans()[0] ^ plan.booleans()[1];
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @Fork(1)
    public boolean plain(BooleanExecutionPlan plan) {
        return plan.booleans()[0] != plan.booleans()[1];
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @Fork(value = 1, jvmArgsAppend = "-Xint")
    public boolean xorNoJIT(BooleanExecutionPlan plan) {
        return plan.booleans()[0] != plan.booleans()[1];
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @Fork(value = 1, jvmArgsAppend = "-Xint")
    public boolean plainNoJIT(BooleanExecutionPlan plan) {
        return plan.booleans()[0] != plan.booleans()[1];
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @Fork(value = 1, jvmArgsAppend = "-XX:-TieredCompilation")
    public boolean xorC2Only(BooleanExecutionPlan plan) {
        return plan.booleans()[0] != plan.booleans()[1];
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @Fork(value = 1, jvmArgsAppend = "-XX:-TieredCompilation")
    public boolean plainC2Only(BooleanExecutionPlan plan) {
        return plan.booleans()[0] != plan.booleans()[1];
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @Fork(value = 1, jvmArgsAppend = "-XX:TieredStopAtLevel=1")
    public boolean xorC1Only(BooleanExecutionPlan plan) {
        return plan.booleans()[0] != plan.booleans()[1];
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @Fork(value = 1, jvmArgsAppend = "-XX:TieredStopAtLevel=1")
    public boolean plainC1Only(BooleanExecutionPlan plan) {
        return plan.booleans()[0] != plan.booleans()[1];
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @Fork(value = 1,
        jvmArgsAppend = {
            "-XX:+UnlockExperimentalVMOptions",
            "-XX:+EagerJVMCI",
            "-Dgraal.ShowConfiguration=info",
            "-XX:+UseJVMCICompiler",
            "-XX:+EnableJVMCI"
        })
    public boolean xorGraalVM(BooleanExecutionPlan plan) {
        return plan.booleans()[0] != plan.booleans()[1];
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @Fork(value = 1,
        jvmArgsAppend = {
            "-XX:+UnlockExperimentalVMOptions",
            "-XX:+EagerJVMCI",
            "-Dgraal.ShowConfiguration=info",
            "-XX:+UseJVMCICompiler",
            "-XX:+EnableJVMCI"
        })
    public boolean plainGraalVM(BooleanExecutionPlan plan) {
        return plan.booleans()[0] != plan.booleans()[1];
    }

}

结果:

BooleanCompare.plain         avgt    2    3.125          ns/op
BooleanCompare.xor           avgt    2    2.976          ns/op

BooleanCompare.plainC1Only   avgt    2    3.400          ns/op
BooleanCompare.xorC1Only     avgt    2    3.379          ns/op

BooleanCompare.plainC2Only   avgt    2    2.583          ns/op
BooleanCompare.xorC2Only     avgt    2    2.685          ns/op

BooleanCompare.plainGraalVM  avgt    2    2.980          ns/op
BooleanCompare.xorGraalVM    avgt    2    3.868          ns/op

BooleanCompare.plainNoJIT    avgt    2  243.348          ns/op
BooleanCompare.xorNoJIT      avgt    2  201.342          ns/op

尽管我有时喜欢这么做,但我不是一个能读汇编程序的多才多艺的人。这里有一些有趣的事情。如果这样做:

  

仅使用!=

的C1编译器
/*
 * run many iterations of this with :
 *  java -XX:+UnlockDiagnosticVMOptions  
 *       -XX:TieredStopAtLevel=1  
 *       "-XX:CompileCommand=print,com/so/BooleanCompare.compare"  
 *       com.so.BooleanCompare
 */
public static boolean compare(boolean left, boolean right) {
    return left != right;
}

我们得到:

  0x000000010d1b2bc7: push   %rbp
  0x000000010d1b2bc8: sub    $0x30,%rsp  ;*iload_0 {reexecute=0 rethrow=0 return_oop=0}
                                         ; - com.so.BooleanCompare::compare@0 (line 22)

  0x000000010d1b2bcc: cmp    %edx,%esi
  0x000000010d1b2bce: mov    $0x0,%eax
  0x000000010d1b2bd3: je     0x000000010d1b2bde
  0x000000010d1b2bd9: mov    $0x1,%eax
  0x000000010d1b2bde: and    $0x1,%eax
  0x000000010d1b2be1: add    $0x30,%rsp
  0x000000010d1b2be5: pop    %rbp

对我来说,这段代码有点明显:将0放入eaxcompare (edx, esi)->如果不相等,则将1放入eax。返回eax & 1

  

带有^:的C1编译器

public static boolean compare(boolean left, boolean right) {
     return left ^ right;
}



  # parm0:    rsi       = boolean
  # parm1:    rdx       = boolean
  #           [sp+0x40]  (sp of caller)
  0x000000011326e5c0: mov    %eax,-0x14000(%rsp)
  0x000000011326e5c7: push   %rbp
  0x000000011326e5c8: sub    $0x30,%rsp   ;*iload_0 {reexecute=0 rethrow=0 return_oop=0}
                                          ; - com.so.BooleanCompare::compare@0 (line 22)

  0x000000011326e5cc: xor    %rdx,%rsi
  0x000000011326e5cf: and    $0x1,%esi
  0x000000011326e5d2: mov    %rsi,%rax
  0x000000011326e5d5: add    $0x30,%rsp
  0x000000011326e5d9: pop    %rbp

我真的不知道为什么这里需要and $0x1,%esi,否则我猜这也很简单。

  

但是,如果启用C2编译器,事情将会变得更加有趣。

/**
 * run with java
 * -XX:+UnlockDiagnosticVMOptions
 * -XX:CICompilerCount=2
 * -XX:-TieredCompilation
 * "-XX:CompileCommand=print,com/so/BooleanCompare.compare"
 * com.so.BooleanCompare
 */
public static boolean compare(boolean left, boolean right) {
    return left != right;
}



  # parm0:    rsi       = boolean
  # parm1:    rdx       = boolean
  #           [sp+0x20]  (sp of caller)
  0x000000011a2bbfa0: sub    $0x18,%rsp
  0x000000011a2bbfa7: mov    %rbp,0x10(%rsp)                

  0x000000011a2bbfac: xor    %r10d,%r10d
  0x000000011a2bbfaf: mov    $0x1,%eax
  0x000000011a2bbfb4: cmp    %edx,%esi
  0x000000011a2bbfb6: cmove  %r10d,%eax                     

  0x000000011a2bbfba: add    $0x10,%rsp
  0x000000011a2bbfbe: pop    %rbp

我什至看不到经典的结语push ebp; mov ebp, esp; sub esp, x,而是通过以下方式(至少对我而言)非常不寻常:

 sub    $0x18,%rsp
 mov    %rbp,0x10(%rsp)

 ....
 add    $0x10,%rsp
 pop    %rbp

再一次,比我更灵活的人可以充满希望地进行解释。否则,它就像生成的C1的更好版本:

xor    %r10d,%r10d // put zero into r10d
mov    $0x1,%eax   // put 1 into eax
cmp    %edx,%esi   // compare edx and esi
cmove  %r10d,%eax  // conditionally move the contents of r10d into eax

由于分支预测,AFAIK cmp/cmovecmp/je要好-至少我已经读过...

  

与C2编译器进行XOR:

public static boolean compare(boolean left, boolean right) {
    return left ^ right;
}



  0x000000010e6c9a20: sub    $0x18,%rsp
  0x000000010e6c9a27: mov    %rbp,0x10(%rsp)                

  0x000000010e6c9a2c: xor    %edx,%esi
  0x000000010e6c9a2e: mov    %esi,%eax
  0x000000010e6c9a30: and    $0x1,%eax
  0x000000010e6c9a33: add    $0x10,%rsp
  0x000000010e6c9a37: pop    %rbp

肯定看起来与生成的C1编译器几乎相同。