这是我的代码:
dataset= pd.read_csv('data.csv')
data = dataset.drop(["gene"],1)
df = data.iloc[:,0:26]
df = df.fillna(0)
X = MinMaxScaler().fit_transform(df)
le = preprocessing.LabelEncoder()
encoded_value = le.fit_transform(["certain", "likely", "possible", "unlikely"])
Y = le.fit_transform(data["category"])
sm = SMOTE(random_state=100)
X_res, y_res = sm.fit_resample(X, Y)
seed = 7
logreg = LogisticRegression(penalty='l1', solver='liblinear',multi_class='auto')
LR_par= {'penalty':['l1'], 'C': [0.5, 1, 5, 10], 'max_iter':[100, 200, 500, 1000]}
rfc =RandomForestClassifier(n_estimators=500)
param_grid = {"max_depth": [3],
"max_features": ["auto"],
"min_samples_split": [2],
"min_samples_leaf": [1],
"bootstrap": [False],
"criterion": ["entropy", "gini"]}
mlp = MLPClassifier(random_state=seed)
parameter_space = {'hidden_layer_sizes': [(50,50,50)],
'activation': ['relu'],
'solver': ['adam'],
'max_iter': [10000],
'alpha': [0.0001],
'learning_rate': ['constant']}
gbm = GradientBoostingClassifier()
param = {"loss":["deviance"],
"learning_rate": [0.001],
"min_samples_split": [2],
"min_samples_leaf": [1],
"max_depth":[3],
"max_features":["auto"],
"criterion": ["friedman_mse"],
"n_estimators":[50]
}
svm = SVC(gamma="scale")
tuned_parameters = {'kernel':('linear', 'rbf'), 'C':(1,0.25,0.5,0.75)}
inner_cv = KFold(n_splits=10, shuffle=True, random_state=seed)
outer_cv = KFold(n_splits=10, shuffle=True, random_state=seed)
def baseline_model():
model = Sequential()
model.add(Dense(100, input_dim=X_res.shape[1], activation='relu')) #dense layers perform: output = activation(dot(input, kernel) + bias).
model.add(Dropout(0.5))
model.add(Dense(50, activation='relu')) #8 is the dim/ the number of hidden units (units are the kernel)
model.add(Dense(4, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
models = []
models.append(('GBM', GridSearchCV(gbm, param, cv=inner_cv,iid=False, n_jobs=1)))
models.append(('RFC', GridSearchCV(rfc, param_grid, cv=inner_cv,iid=False, n_jobs=1)))
models.append(('LR', GridSearchCV(logreg, LR_par, cv=inner_cv, iid=False, n_jobs=1)))
models.append(('SVM', GridSearchCV(svm, tuned_parameters, cv=inner_cv, iid=False, n_jobs=1)))
models.append(('MLP', GridSearchCV(mlp, parameter_space, cv=inner_cv,iid=False, n_jobs=1)))
models.append(('Keras', KerasClassifier(build_fn=baseline_model, epochs=100, batch_size=50, verbose=0)))
results = []
names = []
scoring = 'accuracy'
X_train, X_test, Y_train, Y_test = train_test_split(X_res, y_res, test_size=0.2, random_state=0)
for name, model in models:
nested_cv_results = model_selection.cross_val_score(model, X_res, y_res, cv=outer_cv, scoring=scoring)
results.append(nested_cv_results)
names.append(name)
msg = "Nested CV Accuracy %s: %f (+/- %f )" % (name, nested_cv_results.mean()*100, nested_cv_results.std()*100)
print(msg)
model.fit(X_train, Y_train)
print('Test set accuracy: {:.2f}'.format(model.score(X_test, Y_test)*100), '%')
输出:
Nested CV Accuracy GBM: 90.952381 (+/- 2.776644 )
Test set accuracy: 90.48 %
Nested CV Accuracy RFC: 79.285714 (+/- 5.112122 )
Test set accuracy: 75.00 %
Nested CV Accuracy LR: 91.904762 (+/- 4.416009 )
Test set accuracy: 92.86 %
Nested CV Accuracy SVM: 94.285714 (+/- 3.563483 )
Test set accuracy: 96.43 %
Nested CV Accuracy MLP: 91.428571 (+/- 4.012452 )
Test set accuracy: 92.86 %
随机数据代码:
ran = np.random.randint(4, size=161)
random = np.random.normal(500, 100, size=(161,161))
rand = np.column_stack((random, ran))
print(rand.shape)
X1 = rand[:161]
Y1 = rand[:,-1]
print("Random data counts of label '1': {}".format(sum(ran==1)))
print("Random data counts of label '0': {}".format(sum(ran==0)))
print("Random data counts of label '2': {}".format(sum(ran==2)))
print("Random data counts of label '3': {}".format(sum(ran==3)))
for name, model in models:
cv_results = model_selection.cross_val_score(model, X1, Y1, cv=outer_cv, scoring=scoring)
names.append(name)
msg = "Random data CV %s: %f (+/- %f)" % (name, cv_results.mean()*100, cv_results.std()*100)
print(msg)
随机数据输出:
Random data CV GBM: 100.000000 (+/- 0.000000)
Random data CV RFC: 62.941176 (+/- 15.306485)
Random data CV LR: 23.566176 (+/- 6.546699)
Random data CV SVM: 22.352941 (+/- 6.331220)
Random data CV MLP: 23.639706 (+/- 7.371392)
Random data CV Keras: 22.352941 (+/- 8.896451)
无论我是否减少要素数量,更改网格搜索中的参数,此梯度提升分类器(GBM)均为100%(我确实输入了多个参数,但是这对我来说可能会运行数小时而没有结果,所以我离开了该问题暂时存在),并且如果我尝试使用二进制分类数据也是如此。
随机森林(RFC)也达到了62%,我在做错什么吗?
我正在使用的数据主要是二进制功能,例如如下所示(并预测类别列):
gene Tissue Druggable Eigenvalue CADDvalue Catalogpresence Category
ACE 1 1 1 0 1 Certain
ABO 1 0 0 0 0 Likely
TP53 1 1 0 0 0 Possible
任何指导将不胜感激。
答案 0 :(得分:3)
通常,您可以使用一些参数来减少过度拟合。从概念上最容易理解的是增加min_samples_split和min_samples_leaf。为这些值设置更高的值将使模型无法记住如何正确识别单个数据或非常小的数据组。对于大型数据集(约100万行),我将这些值设置为大约50(如果不更高)。您可以进行网格搜索以找到适合您的特定数据的值。
您还可以使用子样本来减少过拟合和max_features。这些参数基本上不会让您的模型查看一些数据,从而阻止其记忆。