FailedPreconditionError(请参阅上面的回溯):GetNext()失败,因为迭代器尚未初始化

时间:2019-04-09 11:20:03

标签: python tensorflow tensorflow-datasets

在进行预测时,我为输入数据建立了数据集管道。但是,当我尝试代码时,发生了错误

  

FailedPreconditionError(请参阅上面的回溯):GetNext()失败,因为迭代器尚未初始化。在获取下一个元素之前,请确保已为此迭代器运行了初始化程序操作。            [[节点:IteratorGetNext_259 = IteratorGetNextoutput_shapes = [[?, 227,227,6]],output_types = [DT_FLOAT],_ device =“ / job:localhost /副本:0 / task:0 / device:CPU:0”]]

遍历数据集的迭代器定义如下:

for k in range(num_init_ops):
with tf.device('/cpu:0'):


    pre_data.append(PreDataGenerator(pre_file,
                                mode='predicting',
                                batch_size=batch_size,
                                num_classes=num_classes,
                                shuffle=False,
                                iterator_size=iterator_size,
                                kth_init_op=k))

    # create an reinitializable iterator given the dataset structure
    iterator = Iterator.from_structure(pre_data[k].data.output_types,
                                       pre_data[k].data.output_shapes)
    next_batch = iterator.get_next()

# Ops for initializing the two different iterators
predicting_init_op.append(iterator.make_initializer(pre_data[k].data))
之所以写 for 周期,是因为我希望创建多个数据集init-op来将数据拆分为不同的迭代器,以防止积累引起OOM错误的内存调用(我想知道这样做是否可行)

我确定迭代器已初始化(调试时输出正确的结构)。这是我的Tensorflow会话代码:

with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
# sess.run(tf.local_variables_initializer())
saver.restore(sess, './checkpoints_grade1/model_epoch46.ckpt')  # todo:

print("{} Start predicting...".format(datetime.now()))

for j in range(num_init_ops+1):#todo:

    print('{} Initializing {} iterator'.format(datetime.now(),j))

    # Initialize iterator with the predicting dataset
    sess.run(predicting_init_op[j])

    for i in range(iterator_size):

        # get next batch of data
        img_batch = sess.run(next_batch)#todo:?

        # And run the predicting op
        img_batch = tf.reshape(img_batch, (1, 227, 227, 6))
        pred = sess.run(softmax, feed_dict={x: sess.run(img_batch)})
        predicted_label = pred.argmax(axis=1)
        predictions.append(predicted_label[0])
        output_file.write(str(i) + ' , ' + str(predicted_label[0]) + '\n')

2 个答案:

答案 0 :(得分:1)

您需要初始化迭代器:

RequireConsent = false;

做这样的训练:

sess.run(iterator.initializer)

或者,在定义next_batch = iterator.get_next() sess.run(iterator.initializer) for epoch in range(n_epochs): while True: try: batch = sess.run(next_batch) # feed data, train # ... except tf.errors.OutOfRangeError: sess.run(iterator.initializer) break 实例时,您可以指定要训练的时期:

tf.data.Dataset.from_tensor_slices

使用此方法,您不需要data = tf.data.Dataset.from_tensor_slices({ 'x':train_data, 'y':train_labels }).repeat(n_epochs).batch(batch_size) iterator = data.make_initializable_iterator() 循环:

for epoch in range(n_epochs)

答案 1 :(得分:0)

每当我开始预测一批样本时,我就通过a shell script控制预测程序,以便内存不会耗尽。问题解决了。

#!/bin/bash 
for ((i=0;i<9;i++))
do
    python classifier_v4.py --iter_epoch $i
done