Python扫盲词典

时间:2019-04-09 08:51:17

标签: python python-3.x python-2.7 jupyter-notebook

在给定的代码中,我正在进行财务计划。涉及金融素养(fl)人,而不涉及金融素养人(nfl)。我必须计算40年的积蓄,还贷,住房付款后的余额,然后将其绘制在图表上。它涉及两个字典fl和nfl,并且不确定如何在函数中输入字典,因为最后一个函数“模拟”需要调用其余所有函数,并且如果我仅在最后一个函数中输入,则会显示错误

import numpy as numpy
import matplotlib.pyplot as plt
import matplotlib 

fl = {"savings": 5000, "checking": 1000, "debt": 30100, "loan": 0, "yearsWithDebt": 0, "yearsRented": 0, "debtPaid": 0}
nfl = {"savings": 5000, "checking": 1000, "debt": 30100, "loan": 0, "yearsWithDebt": 0, "yearsRented": 0, "debtPaid": 0}
#nfl["savings"]=nfl["savings"]*1.01
#print(range(12))
house_var = False
house_var_1 = False
def savingsPlacement(person):
    """ 
    This function simulates the increasing interest on a person's savings account depending on whether
    they put it in a bank account or a mutual fund. 
    input: a dictionary representing fl or nfl
    output: an updated dictionary with the new savings amount after 1 year of it being in
    either the mutual fund of the bank account
    """ 
    nfl["savings"]=nfl["savings"]*1.01
    fl["savings"]=fl["savings"]*1.07

    return person
def debt(person):
    """ 
    This function simulates the amount of debt a person has left and the amount they
    paid after one year.
    input: a dictionary representing fl or nfl
    output: an updated dictionary. debt, savings, debtPaid, and yearsWithDebt
    are all changed each year if there is debt remaining.
    """
    if(nfl["debt"]>0):
        j=0
        for i in range(12):
            nfl["debt"]=nfl["debt"]-(0.03*nfl["debt"]+1)
            nfl["debtPaid"]=0.03*nfl["debt"]+1
        nfl["debt"]=1.2*nfl["debt"]
        j=j+1;
        nfl["yearsWithDebt"]=j

    if (fl["debt"]>0):
        k=0
        for i in range(12):
            fl["debt"]=fl["debt"]-(0.03*fl["debt"]+15)
            fl["debtPaid"]=0.03*fl["debt"]+15
        fl["debt"]=1.2*fl["debt"]
        k=k+1;
        fl["yearsWithDebt"]=k

    return person

def rent(person):
    """ 
    This function simulates the amount of money a person has left in their bank account
    after paying a year's worth of rent.
    input: a dictionary representing fl or nfl
    output: an updated dictionary with a checking account that has been lowered by the
    amount the person had to pay for rent that year.
    """
    nfl["checking"]=nfl["checking"]-850
    fl["checking"]=fl["checking"]-850

def house(person):
    """
    This function simulates the amount of money a person has left in their bank accont
    after paying monthly mortgage payments for a year.
    input: a dictionary representing fl or nfl
    output: an updated dictionary with a loan and checking account lowered by the
    mortgage payments made that year.
    """
    if house_var==True :
        for j in range(12):
            N = 360
            D = ((0.05 + 1) * N - 1) / (0.05 * (1 + 0.05) * N)
            P = 175000 / D
            nfl["checking"] = nfl["checking"] - P
            nfl["loan"] = (175000-0.05*175000) - P
    if house_var_1==True:
        for j in range(12):
            N = 360
            D = ((0.045 + 1) * N - 1) / (0.045 * (1 + 0.045) * N)
            P = 175000 / D
            fl["checking"] = fl["checking"] - P
            fl["loan"] = (175000-0.2*175000) - P

    return  person

def simulator(person):
    """ 
    This function simulates financial decisions over the course of 40 years.
    input: a dictionary representing fl or nfl
    output: a list of intergers representing the total sum of money that fl
    or nfl has each year. 
    """
    simulator()
    """for i in range(40):
        fl["wealth"]=fl["savings"]+fl["checking"]-fl["debt"]-fl["loan"]
        nfl["wealth"]=nfl["savings"]+nfl["checking"]-nfl["debt"]-nfl["loan"]
        fl["checking"]=fl["checking"]+0.3*29500
        fl["savings"]=fl["savings"]+0.2*29500
        nfl["checking"]=nfl["checking"]+0.3*29500
        nfl["savings"]=nfl["savings"]+0.2*29500
        savingsPlacement(person)
        debt(person)
        if(nfl["checking"]>0.05*175000):
            house_var=True
            house(person)
        if(fl["checking"]>0.2*175000):
            house_var_1=True
    return fl["wealth"],nfl["wealth"],person

"""
datafl = simulator(fl)
datanfl = simulator(nfl)

plt.xlabel('Years')
plt.ylabel('Wealth')
plt.title('Wealth of fl vs nfl Over 40 Years')
plt.plot(datafl, label='fl')
plt.plot(datanfl, label='nfl')
plt.legend()
plt.show()

1 个答案:

答案 0 :(得分:0)

在撰写本文时,您的函数都具有如下签名:

def savingsPlacement(person):

但是,它们都不使用传入的参数person。而是直接引用flnfl变量。

这可能是一项任务。如果是这样,则需要进行返工。我将从放置该版本的副本开始,然后重新开始。选择一个函数,例如savingsPlacement(),然后仅编写该函数,而完全不引用变量名fl或nfl。而是仅使用变量person。在使用该功能时,仅使用您所了解的人。您可能需要为某些函数中硬编码的其他值添加另一个参数。通过使用Python命令行中的参数调用函数来测试该函数。然后再继续执行其他功能。

如果这不是一项任务,那么无论如何您都会发现生成的程序更加有用和通用。