我正在尝试编写一个简单的程序来读取灰度级的bmp图像。我有一套模式(整个字母除了'我'),我想匹配它们。我在Matlab中遇到这个问题。
到目前为止我得到了什么:
clear
clc
%set of patterns
BW1 = imread('alphabet.bmp');
patterns = bwlabel(~BW1);
patternStats = regionprops(patterns,'all');
patternNumber = size(patternStats);
imagePatternArray = cell(patternNumber);
%make cell array of pattern vectors
for i = 1:1:patternNumber
imageMatrix = patternStats(i).Image;
imageVector = imageMatrix(:);
imagePatternArray{i} = imageVector;
end
%set of chars
BW2 = imread('text.bmp');
text = bwlabel(~BW2);
textStats = regionprops(text,'all');
letterNumber = size(textStats);
imageLetterArray = cell(letterNumber);
%make cell array of text vectors
for i = 1:1:letterNumber
imageMatrix = textStats(i).Image;
imageVector = imageMatrix(:);
imageLetterArray{i} = imageVector;
end
%lookup table
charSet =['A','B','C','D','E','F','G','H','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'];
现在我想将模式向量与给定向量进行比较,但它们具有不同的大小。
我该怎么做?有一些特殊的比较功能吗?我应该在末尾添加0,然后用pdist
计算距离吗?
答案 0 :(得分:4)
灵魂
clear
clc
%set of patterns
BW1 = imread('alphabet.bmp');
patterns = bwlabel(~BW1);
patternStats = regionprops(patterns,'all');
patternNumber = size(patternStats);
imagePatternArray = cell(patternNumber);
%make cell array of pattern Matrices
for i = 1:1:patternNumber
imageMatrix = patternStats(i).Image;
imageMatrix = imresize(imageMatrix, [25 20]);
imagePatternArray{i} = imageMatrix;
end
%set of chars
BW2 = imread('kol_2.bmp');
BW2Gray = rgb2gray(BW2); %convert text to grayscale bmp - 0 OR 1
text = bwlabel(~BW2Gray);
textStats = regionprops(text,'all');
letterNumber = size(textStats);
imageLetterArray = cell(letterNumber);
%make cell array of text Matrices
for i = 1:1:letterNumber
imageMatrix = textStats(i).Image;
imageMatrix = imresize(imageMatrix, [25 20]);
imageLetterArray{i} = imageMatrix;
end
%white spaces
whiteSpacesIndexes = [];
for i = 1:letterNumber - 1
firstLetterBox = textStats(i).BoundingBox;
positionFirstVector = [firstLetterBox(1), firstLetterBox(2)];
secondLetterBox = textStats(i+1).BoundingBox;
positionSecondVector = [secondLetterBox(1), secondLetterBox(2)];
distanceVector = positionSecondVector - positionFirstVector;
distance = norm(distanceVector)
% if the distance between is bigger that letter width plus 1/3 of width, it is a whitespace
bothLettersSize = firstLetterBox(3) + secondLetterBox(3);
noSpaceDistance = bothLettersSize - bothLettersSize * 0.25; % - 25 per cent (heuristic value)
if (distance > noSpaceDistance) %&& (abs(distanceVector(2)) > 1.0)
whiteSpacesIndexes = [whiteSpacesIndexes, i + 1];
end
end
compareVector = size(patternNumber);
indexArray = size(letterNumber);
for i = 1:1:letterNumber
for j = 1:1:patternNumber
correlationMatrix = normxcorr2(imagePatternArray{j},imageLetterArray{i});
compareVector(j) = max(abs(correlationMatrix(:)));
end
[correlationMax,correlationIndex] = max(compareVector);
indexArray(i) = correlationIndex;
end
%lookup table
charSet = ['A','B','C','D','E','F','G','H','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'];
%outPut stream
outPut = size(letterNumber);
for i = 1:1:letterNumber
outPut(i) = charSet(indexArray(i));
end
whiteSpaceNumber = size(whiteSpacesIndexes,2);
whiteSpacesIndexes = whiteSpacesIndexes + (0:numel(whiteSpacesIndexes)-1)
nFinal = numel(outPut)+numel(whiteSpacesIndexes ); %# New length of result with blanks
newstr = blanks(nFinal); %# Initialize the result as blanks
newstr(setdiff(1:nFinal,whiteSpacesIndexes )) = outPut
我相当简单并且有一些缺点,比如