与sklearn相比,具有梯度下降的线性回归在相同数据集上给出的结果不同。
想知道为什么会这样。是局部极小值的问题
数据集如下
ht wt
63 127
64 121
66 142
69 157
69 162
71 156
71 169
72 165
73 181
75 208
Sklearn计算截距为-266.53439537,系数为6.13758146
而梯度下降给出的截距为-1.49087014,系数为2.3239637
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
def cost (m,b , data_size):
x = IN
y = OUT
totalError = 0
for i in range (data_size):
x = IN[i]
y = OUT[i]
totalError += ((m*x + b) - y) ** 2
return totalError/ float(data_size)
def compute_gradient(X , Y, theta_1 ,theta_0 , N, learning_rate):
gradient_theta_0 = 0
gradient_theta_1 = 0
#print (X.shape, Y.shape, N)
Y_pred = theta_1*X + theta_0
gradient_theta_1 = ((-2/N) * sum(X * (Y - Y_pred)))
gradient_theta_0 = ((-2/N) * sum(Y - Y_pred))
#print (gradient_theta_0 , gradient_theta_1, gradient_theta_0 *
learning_rate, gradient_theta_1 * learning_rate)
new_theta_0 = theta_0 - (gradient_theta_0 * learning_rate)
new_theta_1 = theta_1 - (gradient_theta_1 * learning_rate)
return (new_theta_1,new_theta_0)
IN = np.array([63 , 64, 66, 69, 69, 71, 71, 72, 73, 75])
OUT = np.array([127,121,142,157,162,156,169,165,181,208])
X = IN[:,np.newaxis]
Y = OUT[:,np.newaxis]
iterations = 10000
initial_theta_0 = 0
initial_theta_1 = 0
learning_rate = 0.00001
theta_0 = initial_theta_0
theta_1 = initial_theta_1
fig,ax = plt.subplots(figsize=(12,8))
cost_history = []
for i in range (iterations):
#print ("iteration {} m {} b {}".format(i, theta_1, theta_0))
[theta_1, theta_0] = compute_gradient(X , Y , theta_1 ,theta_0,
data_size, learning_rate)
totalError = cost (theta_1,theta_0, data_size)
#print (totalError)
cost_history.append (totalError)
ax.plot(range(iterations),cost_history,'b.')
print ("iteration {} m {} b {}".format(i, theta_1, theta_0))
reg_line = [(theta_1 * x) + theta_0 for x in IN]
lm = LinearRegression()
lm.fit(X, Y)
print ("SKLEARN coeff {}".format(lm.coef_))
print ("SKLEARN intercept {}".format(lm.intercept_))
#reg_line = [(lm.coef_[0] * x) + lm.intercept_ for x in IN]
ax3.plot (IN, reg_line , color='red')
plt.show()
print ("SKLEARN coeff {}".format(lm.coef_))
print ("SKLEARN intercept {}".format(lm.intercept_))
RESULTS
iteration 99999 m [2.3239637] b [-1.49087014]
SKLEARN coeff [[6.13758146]]
SKLEARN intercept [-266.53439537]
答案 0 :(得分:1)
您的初始条件不好(0,0),并跌至接近该点的局部最小值。更加直观的初始条件基于ht和wt的最大值和最小值,即
initial_theta_0 = np.min(Y)+np.min(X)*(np.min(Y)-np.max(Y))/(np.max(X)-np.min(X)) #-335.75
initial_theta_1 = (np.max(Y)-np.min(Y))/(np.max(X)-np.min(X)) # 7.25
#initial_theta_0 = 121+63*(121-208)/(75-63) # -335.75
#initial_theta_1 = (208-121)/(75-63) # 7.25