寻找缺失的配对组合

时间:2019-04-08 14:18:20

标签: r dplyr data-munging

我有一个数据框。 我想找出某个地区未记录哪些疾病。 因此,例如: A区没有腮腺炎

我想做的是在某个区域没有疾病的地方,我想在n列中记录一个零。

我认为可能是

DATA$missing<-DATA%>% if (DISEASE %in% DISEASE){"no"}

但是那是行不通的,我没想到它会,但是希望它会...

这是我的数据,在此示例中,我通过过滤原始测试数据帧从区域A中删除了流行性腮腺炎。 如何确定该新数据集中的区域中没有流行性腮腺炎?以及可能缺少的疾病和区域的其他组合,然后在计数列中返回n = 0的值? 谢谢。

library (tidyverse)
library (epitools)


# here's my made up data

DISEASE = c("Marco Polio","Marco Polio","Marco Polio","Marco Polio","Marco Polio",
            "Mumps","Mumps","Mumps","Mumps","Mumps",
            "Chicky Pox","Chicky Pox","Chicky Pox","Chicky Pox","Chicky Pox")
YEAR = c(2011, 2012, 2013, 2014, 2015,
         2011, 2012, 2013, 2014, 2015,
         2011, 2012, 2013, 2014, 2015)
VALUE = c(82,89,79,51,51,
          79,91,69,89,78,
          71,69,95,61,87)
AREA =c("A", "B","C")

DATA = data.frame(DISEASE, YEAR, VALUE,AREA)

DATA<-DATA%>%filter(DISEASE !="Mumps" | AREA !="A")

编辑: 我的预期结果是这样

new_row<-c("Mumps","2015",0,"A")
DATA<-rbind(DATA,new_row)

1 个答案:

答案 0 :(得分:3)

DATA %>% complete(AREA, DISEASE, fill=list(VALUE=0))
# A tibble: 14 x 4
# Groups:   AREA [3]
   AREA  DISEASE      YEAR VALUE
   <fct> <fct>       <dbl> <dbl>
 1 A     Chicky Pox   2013    95
 2 A     Marco Polio  2011    82
 3 A     Marco Polio  2014    51
 4 A     Mumps          NA     0
 5 B     Chicky Pox   2011    71
 6 B     Chicky Pox   2014    61
 7 B     Marco Polio  2012    89
 8 B     Marco Polio  2015    51
 9 B     Mumps        2013    69
10 C     Chicky Pox   2012    69
11 C     Chicky Pox   2015    87
12 C     Marco Polio  2013    79
13 C     Mumps        2011    79
14 C     Mumps        2014    89

如果您希望0行具有特定年份,可以将其添加到fill=list()参数中。