我做什么:
fit_generator()
训练预训练的CNN。这会在每个时期之后产生评估指标(loss, acc, val_loss, val_acc
)。训练模型后,我用loss, acc
生成评估指标(evaluate_generator()
)。我的期望:
fit_generator()
和evaluate_generator()
获得的度量是相同的。他们俩都应基于整个数据集得出指标。我观察到的情况
我不明白的地方:
fit_generator()
的准确度是
与evaluate_generator()
我的代码:
def generate_data(path, imagesize, nBatches):
datagen = ImageDataGenerator(rescale=1./255)
generator = datagen.flow_from_directory\
(directory=path, # path to the target directory
target_size=(imagesize,imagesize), # dimensions to which all images found will be resize
color_mode='rgb', # whether the images will be converted to have 1, 3, or 4 channels
classes=None, # optional list of class subdirectories
class_mode='categorical', # type of label arrays that are returned
batch_size=nBatches, # size of the batches of data
shuffle=True) # whether to shuffle the data
return generator
[...]
def train_model(model, nBatches, nEpochs, trainGenerator, valGenerator, resultPath):
history = model.fit_generator(generator=trainGenerator,
steps_per_epoch=trainGenerator.samples//nBatches, # total number of steps (batches of samples)
epochs=nEpochs, # number of epochs to train the model
verbose=2, # verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch
callbacks=None, # keras.callbacks.Callback instances to apply during training
validation_data=valGenerator, # generator or tuple on which to evaluate the loss and any model metrics at the end of each epoch
validation_steps=
valGenerator.samples//nBatches, # number of steps (batches of samples) to yield from validation_data generator before stopping at the end of every epoch
class_weight=None, # optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting the loss function
max_queue_size=10, # maximum size for the generator queue
workers=32, # maximum number of processes to spin up when using process-based threading
use_multiprocessing=True, # whether to use process-based threading
shuffle=False, # whether to shuffle the order of the batches at the beginning of each epoch
initial_epoch=0) # epoch at which to start training
print("%s: Model trained." % datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
# Save model
modelPath = os.path.join(resultPath, datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + '_modelArchitecture.h5')
weightsPath = os.path.join(resultPath, datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + '_modelWeights.h5')
model.save(modelPath)
model.save_weights(weightsPath)
print("%s: Model saved." % datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
return history, model
[...]
def evaluate_model(model, generator):
score = model.evaluate_generator(generator=generator, # Generator yielding tuples
steps=
generator.samples//nBatches) # number of steps (batches of samples) to yield from generator before stopping
print("%s: Model evaluated:"
"\n\t\t\t\t\t\t Loss: %.3f"
"\n\t\t\t\t\t\t Accuracy: %.3f" %
(datetime.now().strftime('%Y-%m-%d_%H-%M-%S'),
score[0], score[1]))
[...]
def main():
# Create model
modelUntrained = create_model(imagesize, nBands, nClasses)
# Prepare training and validation data
trainGenerator = generate_data(imagePathTraining, imagesize, nBatches)
valGenerator = generate_data(imagePathValidation, imagesize, nBatches)
# Train and save model
history, modelTrained = train_model(modelUntrained, nBatches, nEpochs, trainGenerator, valGenerator, resultPath)
# Evaluate on validation data
print("%s: Model evaluation (valX, valY):" % datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
evaluate_model(modelTrained, valGenerator)
# Evaluate on training data
print("%s: Model evaluation (trainX, trainY):" % datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
evaluate_model(modelTrained, trainGenerator)
更新
我发现了一些报告此问题的网站:
到目前为止,我一直尝试遵循他们提出的一些解决方案,但没有成功。 acc
和loss
与fit_generator()
和evaluate_generator()
仍然不同,即使使用由同一生成器生成的完全相同的数据进行训练和验证也是如此。这是我尝试过的:
K.set_learning_phase(0) # testing
K.set_learning_phase(1) # training
for i in range(len(model.layers)):
if str.startswith(model.layers[i].name, 'bn'):
model.layers[i].trainable=True
# Create pre-trained base model
basemodel = ResNet50(include_top=False, # exclude final pooling and fully connected layer in the original model
weights='imagenet', # pre-training on ImageNet
input_tensor=None, # optional tensor to use as image input for the model
input_shape=(imagesize, # shape tuple
imagesize,
nBands),
pooling=None, # output of the model will be the 4D tensor output of the last convolutional layer
classes=nClasses) # number of classes to classify images into
# Create new untrained layers
x = basemodel.output
x = GlobalAveragePooling2D()(x) # global spatial average pooling layer
x = Dense(1024, activation='relu')(x) # fully-connected layer
y = Dense(nClasses, activation='softmax')(x) # logistic layer making sure that probabilities sum up to 1
# Create model combining pre-trained base model and new untrained layers
model = Model(inputs=basemodel.input,
outputs=y)
# Freeze weights on pre-trained layers
for layer in basemodel.layers:
layer.trainable = False
# Define learning optimizer
learningRate = 0.01
optimizerSGD = optimizers.SGD(lr=learningRate, # learning rate.
momentum=0.9, # parameter that accelerates SGD in the relevant direction and dampens oscillations
decay=learningRate/nEpochs, # learning rate decay over each update
nesterov=True) # whether to apply Nesterov momentum
# Compile model
model.compile(optimizer=optimizerSGD, # stochastic gradient descent optimizer
loss='categorical_crossentropy', # objective function
metrics=['accuracy'], # metrics to be evaluated by the model during training and testing
loss_weights=None, # scalar coefficients to weight the loss contributions of different model outputs
sample_weight_mode=None, # sample-wise weights
weighted_metrics=None, # metrics to be evaluated and weighted by sample_weight or class_weight during training and testing
target_tensors=None) # tensor model's target, which will be fed with the target data during training
from keras.applications.vgg19 import VGG19
basemodel = VGG19(include_top=False, # exclude final pooling and fully connected layer in the original model
weights='imagenet', # pre-training on ImageNet
input_tensor=None, # optional tensor to use as image input for the model
input_shape=(imagesize, # shape tuple
imagesize,
nBands),
pooling=None, # output of the model will be the 4D tensor output of the last convolutional layer
classes=nClasses) # number of classes to classify images into
请让我知道我是否还缺少其他解决方案。
答案 0 :(得分:1)
在这种情况下,训练一个时期可能不足以提供足够的信息。同样,您的训练数据和测试数据可能也不完全相同,因为您没有为flow_from_directory
方法设置随机种子。看看here。
也许,您可以设置种子,删除增强(如果有)并保存经过训练的模型权重,以便稍后加载以进行检查。
答案 1 :(得分:1)
I now managed having the same evaluation metrics. I changed the following:
seed
in flow_from_directory()
as suggested by @Anakindef generate_data(path, imagesize, nBatches):
datagen = ImageDataGenerator(rescale=1./255)
generator = datagen.flow_from_directory(directory=path, # path to the target directory
target_size=(imagesize,imagesize), # dimensions to which all images found will be resize
color_mode='rgb', # whether the images will be converted to have 1, 3, or 4 channels
classes=None, # optional list of class subdirectories
class_mode='categorical', # type of label arrays that are returned
batch_size=nBatches, # size of the batches of data
shuffle=True, # whether to shuffle the data
seed=42) # random seed for shuffling and transformations
return generator
use_multiprocessing=False
in fit_generator()
according to the warning: use_multiprocessing=True and multiple workers may duplicate your data
history = model.fit_generator(generator=trainGenerator,
steps_per_epoch=trainGenerator.samples//nBatches, # total number of steps (batches of samples)
epochs=nEpochs, # number of epochs to train the model
verbose=2, # verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch
callbacks=callback, # keras.callbacks.Callback instances to apply during training
validation_data=valGenerator, # generator or tuple on which to evaluate the loss and any model metrics at the end of each epoch
validation_steps=
valGenerator.samples//nBatches, # number of steps (batches of samples) to yield from validation_data generator before stopping at the end of every epoch
class_weight=None, # optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting the loss function
max_queue_size=10, # maximum size for the generator queue
workers=1, # maximum number of processes to spin up when using process-based threading
use_multiprocessing=False, # whether to use process-based threading
shuffle=False, # whether to shuffle the order of the batches at the beginning of each epoch
initial_epoch=0) # epoch at which to start training
import tensorflow as tf
import random as rn
from keras import backend as K
np.random.seed(42)
rn.seed(12345)
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
datagen = ImageDataGenerator(rescale=1./255)
, I now generate my data with:from keras.applications.resnet50 import preprocess_input
datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
With this, I managed to have a similar accuracy and loss from fit_generator()
and evaluate_generator()
. Also, using the same data for training and testing now results in a similar metrics. Reasons for remaining differences are provided in the keras documentation.
答案 2 :(得分:1)
将 const wrapper = mount(
<Provider...>...
<ButtonA/>
</Provider>);
it('test click button', () => {
const myButton = wrapper.find('.my-button');
//*********** Here I'm able to debug easily.
myButton.simulate('click');
});
级别设置为use_multiprocessing=False
可以解决BUT问题,但会大大降低训练速度。更好但仍不完善的解决方法是,仅将验证生成器设置为fit_generator
,因为下面的代码是从keras的use_multiprocessing=False
函数修改而来的。
fit_generator