我有一个数据框,其中的一列包含带有值列表的行。我想计算所有行中列表内所有单词的出现次数。
例如:数据框df
Column A Column B
animal [cat, dog, tiger]
place [italy, china, japan]
pets [cat, dog]
然后我需要的结果是:
cat : 2
dog: 2
tiger: 1 and so on
答案 0 :(得分:1)
您需要平整值以简化列表和计数值-通过Counter
或Series.value_counts
:
from collections import Counter
s = pd.Series(Counter([y for x in df['Column B'] for y in x]))
print (s)
cat 2
dog 2
tiger 1
italy 1
china 1
japan 1
dtype: int64
Alternative1:
from itertools import chain
from collections import Counter
s = pd.Series(Counter(chain.from_iterable(df['Column B'])))
Alternative2:
s = pd.Series(np.concatenate(df['Column B'])).value_counts()
大数据中的慢替代方案:
s = pd.Series(df['Column B'].sum()).value_counts()
答案 1 :(得分:0)
使用集合中的计数器并打印值。检查下面的代码以供参考。
import pandas as pd
#for counting the elements
from collections import Counter
#dataframe with list values in column B
df = pd.DataFrame([[1,['apple','mango','apple'],3],[1,['mango','mango','soni'],3]],columns=['A','B','C'])
#formatting the output post counting
for i,row in df.iterrows():
c = Counter(row['B'])
print(f'for index {i}')
for k in c.keys():
print(f'{k}: {c.get(k)}')