如何在Python中创建Google Cloud Dataflow Wordcount自定义模板?

时间:2019-04-07 23:25:54

标签: python google-cloud-dataflow apache-beam

我无法按照此处的说明使用wordcount示例创建自定义Google Cloud Dataflow模板:https://cloud.google.com/dataflow/docs/guides/templates/creating-templates

我收到一个与无法访问RuntimeValueProvider有关的错误。我在做什么错了?

我的主要功能wordcount.py


"""A word-counting workflow."""

from __future__ import absolute_import

import argparse
import logging
import re

from past.builtins import unicode

import apache_beam as beam
from apache_beam.io import ReadFromText
from apache_beam.io import WriteToText
from apache_beam.metrics import Metrics
from apache_beam.metrics.metric import MetricsFilter
from apache_beam.options.pipeline_options import PipelineOptions, GoogleCloudOptions
from apache_beam.options.pipeline_options import SetupOptions


class WordExtractingDoFn(beam.DoFn):
    """Parse each line of input text into words."""

    def __init__(self):
        self.words_counter = Metrics.counter(self.__class__, 'words')
        self.word_lengths_counter = Metrics.counter(self.__class__, 'word_lengths')
        self.word_lengths_dist = Metrics.distribution(
            self.__class__, 'word_len_dist')
        self.empty_line_counter = Metrics.counter(self.__class__, 'empty_lines')

    def process(self, element):
        """Returns an iterator over the words of this element.
        The element is a line of text.  If the line is blank, note that, too.
        Args:
          element: the element being processed
        Returns:
          The processed element.
        """
        text_line = element.strip()
        if not text_line:
            self.empty_line_counter.inc(1)
        words = re.findall(r'[\w\']+', text_line, re.UNICODE)
        for w in words:
            self.words_counter.inc()
            self.word_lengths_counter.inc(len(w))
            self.word_lengths_dist.update(len(w))
        return words


def run(argv=None):
    """Main entry point; defines and runs the wordcount pipeline."""

    class WordcountOptions(PipelineOptions):
        @classmethod
        def _add_argparse_args(cls, parser):
            # Use add_value_provider_argument for arguments to be templatable
            # Use add_argument as usual for non-templatable arguments
            parser.add_value_provider_argument(
                '--input',
                default='gs://wordcount_custom_template/input/example.txt',
                help='Path of the file to read from')
            parser.add_value_provider_argument(
                '--output',
                required=True,
                default='gs//wordcount_custom_template/output/count',
                help='Output file to write results to.')

    pipeline_options = PipelineOptions(['--output', 'some/output_path'])
    pipeline_options.view_as(SetupOptions).save_main_session = True
    p = beam.Pipeline(options=pipeline_options)

    wordcount_options = pipeline_options.view_as(WordcountOptions)

    # Read the text file[pattern] into a PCollection.
    lines = p | 'read' >> ReadFromText(wordcount_options.input)

    # Count the occurrences of each word.
    def count_ones(word_ones):
        (word, ones) = word_ones
        return (word, sum(ones))

    counts = (lines
              | 'split' >> (beam.ParDo(WordExtractingDoFn())
                            .with_output_types(unicode))
              | 'pair_with_one' >> beam.Map(lambda x: (x, 1))
              | 'group' >> beam.GroupByKey()
              | 'count' >> beam.Map(count_ones))

    # Format the counts into a PCollection of strings.
    def format_result(word_count):
        (word, count) = word_count
        return '%s: %d' % (word, count)

    output = counts | 'format' >> beam.Map(format_result)

    # Write the output using a "Write" transform that has side effects.
    # pylint: disable=expression-not-assigned
    output | 'write' >> WriteToText(wordcount_options.output)

    result = p.run()
    result.wait_until_finish()

    # Do not query metrics when creating a template which doesn't run
    if (not hasattr(result, 'has_job')  # direct runner
            or result.has_job):  # not just a template creation
        empty_lines_filter = MetricsFilter().with_name('empty_lines')
        query_result = result.metrics().query(empty_lines_filter)
        if query_result['counters']:
            empty_lines_counter = query_result['counters'][0]
            logging.info('number of empty lines: %d', empty_lines_counter.result)

        word_lengths_filter = MetricsFilter().with_name('word_len_dist')
        query_result = result.metrics().query(word_lengths_filter)
        if query_result['distributions']:
            word_lengths_dist = query_result['distributions'][0]
            logging.info('average word length: %d', word_lengths_dist.result.mean)


if __name__ == '__main__':
    logging.getLogger().setLevel(logging.INFO)
    run()

我的模板创建代码:

#!/usr/bin/env bash
python wordcount.py \
    --runner DataflowRunner \
    --project $PROJECT \
    --staging_location gs://wordcount_custom_template/staging \
    --temp_location gs://wordcount_custom_template/temp \
    --template_location gs://wordcount_custom_template/template/wordcount_template

我收到的错误:

raise error.RuntimeValueProviderError('%s not accessible' % obj)
apache_beam.error.RuntimeValueProviderError: RuntimeValueProvider(option: input, type: str, default_value: 'gs://wordcount_custom_template/input/example.txt') not accessible

我不太了解此错误消息的含义,因为gs://wordcount_custom_template/input/example.txt可以访问

完整的堆栈跟踪:

INFO:root:Missing pipeline option (runner). Executing pipeline using the default runner: DirectRunner.
INFO:root:==================== <function annotate_downstream_side_inputs at 0x108e5fa28> ====================
INFO:root:==================== <function lift_combiners at 0x108e5ff50> ====================
INFO:root:==================== <function expand_gbk at 0x108e5fde8> ====================
INFO:root:==================== <function sink_flattens at 0x108e5fe60> ====================
INFO:root:==================== <function greedily_fuse at 0x108e5f848> ====================
INFO:root:==================== <function sort_stages at 0x108e5faa0> ====================
INFO:root:Running (ref_AppliedPTransform_read/Read_3)+((ref_AppliedPTransform_split_4)+((ref_AppliedPTransform_pair_with_one_5)+(group/Write)))
INFO:root:start <DataOutputOperation group/Write >
INFO:root:start <DoOperation pair_with_one output_tags=['out']>
INFO:root:start <DoOperation split output_tags=['out']>
INFO:root:start <ReadOperation read/Read source=SourceBundle(weight=1.0, source=<apache_beam.io.textio._TextSource object at 0x108cfcd50>, start_position=None, stop_position=None)>
Traceback (most recent call last):
  File "wordcount.py", line 121, in <module>
    run()
  File "wordcount.py", line 100, in run
    result = p.run()
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/pipeline.py", line 369, in run
    self.to_runner_api(), self.runner, self._options).run(False)
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/pipeline.py", line 382, in run
    return self.runner.run_pipeline(self)
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/runners/direct/direct_runner.py", line 129, in run_pipeline
    return runner.run_pipeline(pipeline)
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/runners/portability/fn_api_runner.py", line 215, in run_pipeline
    return self.run_via_runner_api(pipeline.to_runner_api())
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/runners/portability/fn_api_runner.py", line 218, in run_via_runner_api
    return self.run_stages(*self.create_stages(pipeline_proto))
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/runners/portability/fn_api_runner.py", line 837, in run_stages
    pcoll_buffers, safe_coders).process_bundle.metrics
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/runners/portability/fn_api_runner.py", line 938, in run_stage
    self._progress_frequency).process_bundle(data_input, data_output)
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/runners/portability/fn_api_runner.py", line 1110, in process_bundle
    result_future = self._controller.control_handler.push(process_bundle)
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/runners/portability/fn_api_runner.py", line 1003, in push
    response = self.worker.do_instruction(request)
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/runners/worker/sdk_worker.py", line 185, in do_instruction
    request.instruction_id)
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/runners/worker/sdk_worker.py", line 202, in process_bundle
    processor.process_bundle(instruction_id)
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/runners/worker/bundle_processor.py", line 286, in process_bundle
    op.start()
  File "apache_beam/runners/worker/operations.py", line 227, in apache_beam.runners.worker.operations.ReadOperation.start
  File "apache_beam/runners/worker/operations.py", line 228, in apache_beam.runners.worker.operations.ReadOperation.start
  File "apache_beam/runners/worker/operations.py", line 229, in apache_beam.runners.worker.operations.ReadOperation.start
  File "apache_beam/runners/worker/operations.py", line 231, in apache_beam.runners.worker.operations.ReadOperation.start
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/io/filebasedsource.py", line 197, in get_range_tracker
    return self._get_concat_source().get_range_tracker(start_position,
  File "/Users/chris/.pyenv/versions/cl2/lib/python2.7/site-packages/apache_beam/options/value_provider.py", line 123, in _f
    raise error.RuntimeValueProviderError('%s not accessible' % obj)
apache_beam.error.RuntimeValueProviderError: RuntimeValueProvider(option: input, type: str, default_value: 'gs://wordcount_custom_template/input/example.txt') not accessible

我不明白的另一件事是,如何指定DataflowRunner却又如stacktrace中所示调用DirectRunner?

1 个答案:

答案 0 :(得分:1)

在修改run(argv)以从命令行获取args之后,我成功生成了管道:

parser = argparse.ArgumentParser()
known_args, pipeline_args = parser.parse_known_args(argv)                                                                                                                                                                                                                                                                 
pipeline_options = PipelineOptions(pipeline_args)

所以我认为问题在于argv没有正确传递给您的程序。

此外,我认为如果您想将输出设为模板arg,请不要将其标记为必需。