房间收藏
_id: ObjectId("xxx")
bedspaces: Array
0:ObjectId("xx")
1:ObjectId("xx")
***
***
-床位收藏
_id: ObjectId("xxxx");
number: 1
decks: Array
{
_id: ObjectId("xxx");
number: 1
status: "Vacant"
tenant: ObjectId("5c964ae7f5097e3020d1926c")
dueRent: 11
away: null
},
{
_id: ObjectId("xxx");
number: 2
status: "Vacant"
tenant: null
dueRent: 11
away: null
}
在decks数组下是我的租户字段,它具有objectId,我将在租户集合中查找此对象ID。
租户集合
_id: ObjectId("5c964ae7f5097e3020d1926c");
name: 'John Doe'
预期输出
/*room collection*/
_id: ObjectId("xxx")
bedspaces: [
{
_id: ObjectId("xxx")
number: 1
decks: [
{
_id: ObjectId("xxx")
number: 1
status: "Vacant"
tenant: {
name: 'John Doe'
}
dueRent: 11
away: null
},
{
_id: ObjectId("xxx");
number: 1
status: "Vacant"
tenant: null
dueRent: 11
away: null
}
]
}
]
还有一个实例,即套牌数组等于null。
在以下聚合中,它将仅显示具有对象ID的承租人的甲板,我要显示的是两个甲板。
{
from: 'beds',
let: {bedspace: '$bedspaces'},
pipeline:[
{
$match: {
$expr: {
$in: ["$_id", "$$bedspace"]
}
}
},
{
$unwind: "$decks"
},
{
$lookup: {
from: 'tenants',
let: {tenant: "$decks.tenant"},
pipeline: [
{
$match: {
$expr: {
$eq: ["$_id", "$$tenant"]
}
}
}
],
as: "decks.tenant",
}
},
{
$unwind: "$decks.tenant"
},
{ $group: {
_id: "$_id",
decks: { $push: "$decks" },
number: {$first: "$number"}
}}
],
as: "bedspaces"
}
“我如何在第二次查找中添加条件,仅在租户不为空的情况下执行”,这样我就可以检索到两个卡片组或任何变通方法,从而可以达到我想要的结果
答案 0 :(得分:1)
现在真的没有时间进行所有解释(抱歉),
这里的基本问题是$unwind
的使用是您的问题,您不需要它。在产生的数组内容上使用$map
并与"decks"
数组合并。然后,您可以拥有nulls
。
您要在此处进行的操作是将"tenants"
集合中的$lookup
中的值转置到"beds/bedspaces"
集合中的现有数组中,因为拥有现有的"tenant"
值,它们是外部集合的ObjectId
引用。
$lookup
阶段不能通过简单地在"as"
输出中命名字段路径来做到这一点,其中该路径已经在另一个数组中,并且实际上$lookup
的输出是总是从国外收藏中获得的一系列结果。您希望每个实际匹配为奇异值,当然,您希望null
放置在没有任何匹配项的位置,并且当然会使"decks"
的原始文档数组保持完整,但只包括在国外找到的详细信息。
当您在""tenants"
集合的$unwind
结果中使用$lookup
进入时,您的代码尝试似乎部分意识到了这一点。”临时数组” (但是您将其放入现有路径中并且会覆盖内容),然后尝试通过$group
和$push
将其“重新分组”为数组。但是,问题当然是$lookup
的结果不适用于"decks"
中的每个数组成员,因此最终得到的结果少于所需的结果。
真正的解决方案不是“条件$lookup
” ,而是转置来自“临时数组” 的内容结果放入现有的"decks"
条目中。为此,您可以使用$map
处理数组成员,并使用$arrayElemAt
和$indexOfArray
来返回“临时数组” 中的匹配元素。将_id
的值匹配到"tenant"
。
{ "$lookup": {
"from": Tenant.collection.name,
"let": { "tenant": "$decks.tenant" },
"pipeline": [
{ "$match": {
"$expr": { "$in": [ "$_id", "$$tenant" ] }
}}
],
"as": "tenant"
}},
{ "$addFields": {
"decks": {
"$map": {
"input": "$decks",
"in": {
"$mergeObjects": [
"$$this",
{
"tenant": {
"$cond": {
"if": {
"$eq": [
{ "$indexOfArray": ["$tenant._id", "$$this.tenant"] },
-1
]
},
"then": null,
"else": {
"$arrayElemAt": [
"$tenant",
{ "$indexOfArray": ["$tenant._id", "$$this.tenant"]}
]
}
}
}
}
请注意,我们在$mergeObjects
内使用$map
是为了保留"decks"
数组的现有内容,并仅替换(或“合并”){{ 1}}(每个数组成员)。您已经在使用表现力的$lookup
,而$mergeObjects
这样的功能是MongoDB 3.6的功能。
仅出于兴趣,只需指定数组中的每个字段即可完成同一操作。即:
"tenant"
对于$addFields
中使用的 "decks": {
"$map": {
"input": "$decks",
"in": {
"_id": "$$this._id",
"number": "$$this.number",
"tenant": {
// same expression
},
"__v": "$$this.__v" // just because it's mongoose
}
}
}
来说也可以这么说,这也是MongoDB 3.6的另一个功能。您也可以只使用$project
并忽略不想要的字段:
$$REMOVE
但这基本上就是它的工作方式。通过获取$lookup
结果,然后转置这些结果回到文档中的原始数组。
还可以从此处先前的问题中提取数据,这比您在此处的问题中发布的内容要好一些。可运行的清单进行演示:
{ "$project": {
"number": "$number",
"decks": {
"$map": { /* same expression */ }
},
"__v": "$__v"
// note we don't use the "tenant" temporary array
}}
返回:
const { Schema, Types: { ObjectId } } = mongoose = require('mongoose');
const uri = 'mongodb://localhost:27017/hotel';
const opts = { useNewUrlParser: true };
mongoose.set('useFindAndModify', false);
mongoose.set('useCreateIndexes', true);
mongoose.set('debug', true);
const tenantSchema = new Schema({
name: String,
age: Number
});
const deckSchema = new Schema({
number: Number,
tenant: { type: Schema.Types.ObjectId, ref: 'Tenant' }
});
const bedSchema = new Schema({
number: Number,
decks: [deckSchema]
});
const roomSchema = new Schema({
bedspaces: [{ type: Schema.Types.ObjectId, ref: 'Bed' }]
});
const Tenant = mongoose.model('Tenant', tenantSchema);
const Bed = mongoose.model('Bed', bedSchema);
const Room = mongoose.model('Room', roomSchema);
const log = data => console.log(JSON.stringify(data, undefined, 2));
(async function() {
try {
const conn = await mongoose.connect(uri, opts);
// Clean data
await Promise.all(
Object.entries(conn.models).map(([k, m]) => m.deleteMany())
);
// Insert data
let [john, jane, bilbo ] = await Tenant.insertMany([
{
_id: ObjectId("5c964ae7f5097e3020d1926c"),
name: "john doe",
age: 11
},
{
_id: ObjectId("5c964b2531bc162fdce64f15"),
name: "jane doe",
age: 12
},
{
_id: ObjectId("5caa5454494558d863513b24"),
name: "bilbo",
age: 111
}
]);
let bedspaces = await Bed.insertMany([
{
_id: ObjectId("5c98d89c6bd5fc26a4c2851b"),
number: 1,
decks: [
{
number: 1,
tenant: john
},
{
number: 1,
tenant: jane
}
]
},
{
_id: ObjectId("5c98d89f6bd5fc26a4c28522"),
number: 2,
decks: [
{
number: 2,
tenant: bilbo
},
{
number: 3
}
]
}
]);
await Room.create({ bedspaces });
// Aggregate
let results = await Room.aggregate([
{ "$lookup": {
"from": Bed.collection.name,
"let": { "bedspaces": "$bedspaces" },
"pipeline": [
{ "$match": {
"$expr": { "$in": [ "$_id", "$$bedspaces" ] }
}},
{ "$lookup": {
"from": Tenant.collection.name,
"let": { "tenant": "$decks.tenant" },
"pipeline": [
{ "$match": {
"$expr": { "$in": [ "$_id", "$$tenant" ] }
}}
],
"as": "tenant"
}},
{ "$addFields": {
"decks": {
"$map": {
"input": "$decks",
"in": {
"$mergeObjects": [
"$$this",
{
"tenant": {
"$cond": {
"if": {
"$eq": [
{ "$indexOfArray": ["$tenant._id", "$$this.tenant"] },
-1
]
},
"then": null,
"else": {
"$arrayElemAt": [
"$tenant",
{ "$indexOfArray": ["$tenant._id", "$$this.tenant"]}
]
}
}
}
}
]
}
}
},
"tenant": "$$REMOVE"
}}
],
"as": "bedspaces"
}}
]);
log(results);
} catch (e) {
console.error(e)
} finally {
mongoose.disconnect();
}
})()
按预期在Mongoose: tenants.deleteMany({}, {})
Mongoose: beds.deleteMany({}, {})
Mongoose: rooms.deleteMany({}, {})
Mongoose: tenants.insertMany([ { _id: 5c964ae7f5097e3020d1926c, name: 'john doe', age: 11, __v: 0 }, { _id: 5c964b2531bc162fdce64f15, name: 'jane doe', age: 12, __v: 0 }, { _id: 5caa5454494558d863513b24, name: 'bilbo', age: 111, __v: 0 } ], {})
Mongoose: beds.insertMany([ { _id: 5c98d89c6bd5fc26a4c2851b, number: 1, decks: [ { _id: 5caa5af6ed3dce1c3ed72cef, number: 1, tenant: 5c964ae7f5097e3020d1926c }, { _id: 5caa5af6ed3dce1c3ed72cee, number: 1, tenant: 5c964b2531bc162fdce64f15 } ], __v: 0 }, { _id: 5c98d89f6bd5fc26a4c28522, number: 2, decks: [ { _id: 5caa5af6ed3dce1c3ed72cf2, number: 2, tenant: 5caa5454494558d863513b24 }, { _id: 5caa5af6ed3dce1c3ed72cf1, number: 3 } ], __v: 0 } ], {})
Mongoose: rooms.insertOne({ bedspaces: [ ObjectId("5c98d89c6bd5fc26a4c2851b"), ObjectId("5c98d89f6bd5fc26a4c28522") ], _id: ObjectId("5caa5af6ed3dce1c3ed72cf3"), __v: 0 })
Mongoose: rooms.aggregate([ { '$lookup': { from: 'beds', let: { bedspaces: '$bedspaces' }, pipeline: [ { '$match': { '$expr': { '$in': [ '$_id', '$$bedspaces' ] } } }, { '$lookup': { from: 'tenants', let: { tenant: '$decks.tenant' }, pipeline: [ { '$match': { '$expr': { '$in': [ '$_id', '$$tenant' ] } } } ], as: 'tenant' } }, { '$addFields': { decks: { '$map': { input: '$decks', in: { '$mergeObjects': [ '$$this', { tenant: [Object] } ] } } }, tenant: '$$REMOVE' } } ], as: 'bedspaces' } } ], {})
[
{
"_id": "5caa5af6ed3dce1c3ed72cf3",
"bedspaces": [
{
"_id": "5c98d89c6bd5fc26a4c2851b",
"number": 1,
"decks": [
{
"_id": "5caa5af6ed3dce1c3ed72cef",
"number": 1,
"tenant": {
"_id": "5c964ae7f5097e3020d1926c",
"name": "john doe",
"age": 11,
"__v": 0
}
},
{
"_id": "5caa5af6ed3dce1c3ed72cee",
"number": 1,
"tenant": {
"_id": "5c964b2531bc162fdce64f15",
"name": "jane doe",
"age": 12,
"__v": 0
}
}
],
"__v": 0
},
{
"_id": "5c98d89f6bd5fc26a4c28522",
"number": 2,
"decks": [
{
"_id": "5caa5af6ed3dce1c3ed72cf2",
"number": 2,
"tenant": {
"_id": "5caa5454494558d863513b24",
"name": "bilbo",
"age": 111,
"__v": 0
}
},
{
"_id": "5caa5af6ed3dce1c3ed72cf1",
"number": 3,
"tenant": null
}
],
"__v": 0
}
],
"__v": 0
}
]
数组中第二个条目的第二个条目上显示null
。