我正在尝试使用Python(Mnih et al., 2015之后的Tensorflow用Python编写自己的DQN算法。在train_DQN
函数中,我定义了训练过程,而DQN_CartPole
用于定义函数逼近(简单的三层神经网络)。对于损失函数,先执行Huber损失或MSE,然后进行梯度裁剪(介于-1和1之间)。然后,我通过在主网络中复制权重来实现目标网络的软更新而不是硬更新。
我正在CartPole环境(OpenAI体育馆)上进行尝试,但是回报并没有像其他人的算法(例如keras-rl)那样提高。任何帮助将不胜感激。
如果可能,您可以看一下源代码吗?
class Parameters:
def __init__(self, mode=None):
assert mode != None
print("Loading Params for {} Environment".format(mode))
if mode == "Atari":
self.state_reshape = (1, 84, 84, 1)
self.num_frames = 1000000
self.memory_size = 10000
self.learning_start = 10000
self.sync_freq = 1000
self.batch_size = 32
self.gamma = 0.99
self.update_hard_or_soft = "soft"
self.soft_update_tau = 1e-2
self.epsilon_start = 1.0
self.epsilon_end = 0.01
self.decay_steps = 1000
self.prioritized_replay_alpha = 0.6
self.prioritized_replay_beta_start = 0.4
self.prioritized_replay_beta_end = 1.0
self.prioritized_replay_noise = 1e-6
elif mode == "CartPole":
self.state_reshape = (1, 4)
self.num_frames = 10000
self.memory_size = 20000
self.learning_start = 100
self.sync_freq = 100
self.batch_size = 32
self.gamma = 0.99
self.update_hard_or_soft = "soft"
self.soft_update_tau = 1e-2
self.epsilon_start = 1.0
self.epsilon_end = 0.01
self.decay_steps = 500
self.prioritized_replay_alpha = 0.6
self.prioritized_replay_beta_start = 0.4
self.prioritized_replay_beta_end = 1.0
self.prioritized_replay_noise = 1e-6
class _DQN:
"""
Boilerplate for DQN Agent
"""
def __init__(self):
"""
define the deep learning model here!
"""
pass
def predict(self, sess, state):
"""
predict q-values given a state
:param sess:
:param state:
:return:
"""
return sess.run(self.pred, feed_dict={self.state: state})
def update(self, sess, state, action, Y):
feed_dict = {self.state: state, self.action: action, self.Y: Y}
_, loss = sess.run([self.train_op, self.loss], feed_dict=feed_dict)
# print(action, Y, sess.run(self.idx_flattened, feed_dict=feed_dict))
return loss
class DQN_CartPole(_DQN):
"""
DQN Agent for CartPole game
"""
def __init__(self, scope, env, loss_fn ="MSE"):
self.scope = scope
self.num_action = env.action_space.n
with tf.variable_scope(scope):
self.state = tf.placeholder(shape=[None, 4], dtype=tf.float32, name="X")
self.Y = tf.placeholder(shape=[None], dtype=tf.float32, name="Y")
self.action = tf.placeholder(shape=[None], dtype=tf.int32, name="action")
fc1 = tf.keras.layers.Dense(16, activation=tf.nn.relu)(self.state)
fc2 = tf.keras.layers.Dense(16, activation=tf.nn.relu)(fc1)
fc3 = tf.keras.layers.Dense(16, activation=tf.nn.relu)(fc2)
self.pred = tf.keras.layers.Dense(self.num_action, activation=tf.nn.relu)(fc3)
# indices of the executed actions
self.idx_flattened = tf.range(0, tf.shape(self.pred)[0]) * tf.shape(self.pred)[1] + self.action
# passing [-1] to tf.reshape means flatten the array
# using tf.gather, associate Q-values with the executed actions
self.action_probs = tf.gather(tf.reshape(self.pred, [-1]), self.idx_flattened)
if loss_fn == "huber_loss":
# use huber loss
self.losses = tf.subtract(self.Y, self.action_probs)
self.loss = huber_loss(self.losses)
elif loss_fn == "MSE":
# use MSE
self.losses = tf.squared_difference(self.Y, self.action_probs)
self.loss = tf.reduce_mean(self.losses)
else:
assert False
# you can choose whatever you want for the optimiser
# self.optimizer = tf.train.RMSPropOptimizer(0.00025, 0.99, 0.0, 1e-6)
self.optimizer = tf.train.AdamOptimizer()
# to apply Gradient Clipping, we have to directly operate on the optimiser
# check this: https://www.tensorflow.org/api_docs/python/tf/train/Optimizer#processing_gradients_before_applying_them
self.grads_and_vars = self.optimizer.compute_gradients(self.loss)
self.clipped_grads_and_vars = [(ClipIfNotNone(grad, -1., 1.), var) for grad, var in self.grads_and_vars]
self.train_op = self.optimizer.apply_gradients(self.clipped_grads_and_vars)
def train_DQN(main_model, target_model, env, replay_buffer, policy, params):
"""
Train DQN agent which defined above
:param main_model:
:param target_model:
:param env:
:param params:
:return:
"""
# log purpose
losses, all_rewards, cnt_action = [], [], []
episode_reward, index_episode = 0, 0
with tf.Session() as sess:
# initialise all variables used in the model
sess.run(tf.global_variables_initializer())
state = env.reset()
start = time.time()
for frame_idx in range(1, params.num_frames + 1):
action = policy.select_action(sess, target_model, state.reshape(params.state_reshape))
cnt_action.append(action)
next_state, reward, done, _ = env.step(action)
replay_buffer.add(state, action, reward, next_state, done)
state = next_state
episode_reward += reward
if done:
index_episode += 1
state = env.reset()
all_rewards.append(episode_reward)
if frame_idx > params.learning_start and len(replay_buffer) > params.batch_size:
states, actions, rewards, next_states, dones = replay_buffer.sample(params.batch_size)
next_Q = target_model.predict(sess, next_states)
Y = rewards + params.gamma * np.max(next_Q, axis=1) * np.logical_not(dones)
loss = main_model.update(sess, states, actions, Y)
# Logging and refreshing log purpose values
losses.append(np.mean(loss))
logging(frame_idx, params.num_frames, index_episode, time.time()-start, episode_reward, np.mean(loss), cnt_action)
episode_reward = 0
cnt_action = []
start = time.time()
if frame_idx > params.learning_start and frame_idx % params.sync_freq == 0:
# soft update means we partially add the original weights of target model instead of completely
# sharing the weights among main and target models
if params.update_hard_or_soft == "hard":
sync_main_target(sess, main_model, target_model)
elif params.update_hard_or_soft == "soft":
soft_target_model_update(sess, main_model, target_model, tau=params.soft_update_tau)
return all_rewards, losses
np.logical_not(dones)
答案 0 :(得分:1)
简而言之,似乎dones
变量是一个二进制向量,其中1
表示已完成,而0
表示未完成。
然后您在此处使用dones
Y = rewards + params.gamma * np.argmax(next_Q, axis=1) * dones
因此,对于所有终止过渡,您在遵循情节其余部分(为零)的策略时会添加预期的累积奖励。对于所有非终止过渡,您不会添加预期的累积奖励。
我认为您是要反过来做,也许将上面代码行中的dones
换成np.logical_not(dones)
?
此外,现在我来看,这行似乎还有另一个主要问题。 np.argmax(next_Q, axis=1)
返回next_Q向量中最大值的索引,而不是实际最大值。您需要np.maximum(next_Q, axis=1)
(IIRC)才能获得下一状态操作的最大预期奖励。
编辑:损失函数的定义也很奇怪。您正在将Huber损失与均方误差混合在一起。如果要使用huber_loss或MSE,则只需根据预期值和预测值之间的差进行计算。您似乎同时在做这两种事情,这当然不是通常定义的损失函数。例如,使用Huber Loss的模型损失应为:
self.loss = tf.reduce_mean(huber_loss(abs(self.Y - self.action_probs)))