如果条件为Matlab

时间:2019-04-06 18:31:14

标签: matlab if-statement

clear;
clc;
%% INPUT DATA
input_data = [200 10.0 0.0095                                           %C1
              240  7.0 0.0070                                           %C2
              200 11.0 0.0090                                           %C3
              220  8.5 0.0090                                           %C4
              220 10.5 0.0080];                                         %C5

                        %P1    %P2      %P3    %P4       %P5
            loss_data = [0.0015 0        0      0         0             
                         0      0.0014   0      0         0
                         0      0       -0.0001 0         0
                         0      0        0      0.0009    0
                         0      0        0      0        -0.0004];   

             mwlimits = [ 50  200
                         100  500
                          50  150
                          80  300
                          50  200];        



                       pd=830;   %Power Demand
%%
lambda = input ('Enter initial lambda:')

i=1;
while i <= 6 
    fprintf('ITERATION %d \n\n', i);

p1=(lambda-input_data(1,2))/(2*(input_data(1,3)+(lambda*loss_data(1,1))));
p2=(lambda-input_data(2,2))/(2*(input_data(2,3)+(lambda*loss_data(2,2))));
p3=(lambda-input_data(3,2))/(2*(input_data(3,3)+(lambda*loss_data(3,3))));
p4=(lambda-input_data(4,2))/(2*(input_data(4,3)+(lambda*loss_data(4,4))));
p5=(lambda-input_data(5,2))/(2*(input_data(5,3)+(lambda*loss_data(5,5))));
fprintf('\tP1: %5.4f\n', p1);
fprintf('\tP2: %5.4f\n', p2);
fprintf('\tP3: %5.4f\n', p3);
fprintf('\tP4: %5.4f\n', p4);
fprintf('\tP5: %5.4f\n\n', p5);




% END OF CHECKING LIMITS %

%VERIFYING IF IT MET THE CONDITIONS%
ploss=(loss_data(1,1)*(p1))+(loss_data(2,2)*(p2))+(loss_data(3,3)*(p3))+(loss_data(4,4)*(p4))+(loss_data(5,5)*(p5));
fprintf('\tPloss: %5.4f\n', ploss);

delta_p=pd+ploss-p1-p2-p3-p4-p5;
fprintf('\tDelta P: %5.4f\n', delta_p);

if (delta_p~=0)   %General Case%

    summation=((input_data(1,3)+(loss_data(1,1)*input_data(1,2)))/(2*(input_data(1,3)+(lambda*loss_data(1,1)))^2))+((input_data(2,3)+(loss_data(2,2)*input_data(2,2)))/(2*(input_data(2,3)+(lambda*loss_data(2,2)))^2))+((input_data(3,3)+(loss_data(3,3)*input_data(3,2)))/(2*(input_data(3,3)+(lambda*loss_data(3,3)))^2))+((input_data(4,3)+(loss_data(4,4)*input_data(4,2)))/(2*(input_data(4,3)+(lambda*loss_data(4,4)))^2))+((input_data(5,3)+(loss_data(5,5)*input_data(5,2)))/(2*(input_data(5,3)+(lambda*loss_data(5,5)))^2));
    fprintf('\tSummation: %5.10f\n', summation);

 else if (delta_p==0)&& (p1>mwlimits(1,2)) %Start of P1 random
         p1=mwlimits(1,2);
        fprintf('\tP1 new: %5.4f', p1);

    delta_p=pd+ploss-p1-p2-p3-p4-p5;
    summation=((input_data(2,3)+(loss_data(2,2)*input_data(2,2)))/(2*(input_data(2,3)+(lambda*loss_data(2,2)))^2))+((input_data(3,3)+(loss_data(3,3)*input_data(3,2)))/(2*(input_data(3,3)+(lambda*loss_data(3,3)))^2))+((input_data(4,3)+(loss_data(4,4)*input_data(4,2)))/(2*(input_data(4,3)+(lambda*loss_data(4,4)))^2))+((input_data(5,3)+(loss_data(5,5)*input_data(5,2)))/(2*(input_data(5,3)+(lambda*loss_data(5,5)))^2));
    fprintf('\tSummation: %5.10f\n', summation);    


else if (delta_p==0)&& (p1<mwlimits(1,1)) 
    p1=mwlimits(1,1);
    fprintf('\tP1 new: %5.4f', p1); 

    delta_p=pd+ploss-p1-p2-p3-p4-p5;
    summation=((input_data(2,3)+(loss_data(2,2)*input_data(2,2)))/(2*(input_data(2,3)+(lambda*loss_data(2,2)))^2))+((input_data(3,3)+(loss_data(3,3)*input_data(3,2)))/(2*(input_data(3,3)+(lambda*loss_data(3,3)))^2))+((input_data(4,3)+(loss_data(4,4)*input_data(4,2)))/(2*(input_data(4,3)+(lambda*loss_data(4,4)))^2))+((input_data(5,3)+(loss_data(5,5)*input_data(5,2)))/(2*(input_data(5,3)+(lambda*loss_data(5,5)))^2));
    fprintf('\tSummation: %5.10f\n', summation);    

else if(delta_p==0)&&((p1>mwlimits(1,1))&&(p1<mwlimits(1,2)))
        p1=p1;
         fprintf('\tP1 new: %5.4f', p1);

    delta_p=pd+ploss-p1-p2-p3-p4-p5;
    summation=((input_data(1,3)+(loss_data(1,1)*input_data(1,2)))/(2*(input_data(1,3)+(lambda*loss_data(1,1)))^2))+((input_data(2,3)+(loss_data(2,2)*input_data(2,2)))/(2*(input_data(2,3)+(lambda*loss_data(2,2)))^2))+((input_data(3,3)+(loss_data(3,3)*input_data(3,2)))/(2*(input_data(3,3)+(lambda*loss_data(3,3)))^2))+((input_data(4,3)+(loss_data(4,4)*input_data(4,2)))/(2*(input_data(4,3)+(lambda*loss_data(4,4)))^2))+((input_data(5,3)+(loss_data(5,5)*input_data(5,2)))/(2*(input_data(5,3)+(lambda*loss_data(5,5)))^2));
    fprintf('\tSummation: %5.10f\n', summation); 
    end
    end
    end   %End of p1 random

if (delta_p==0)&& (p2>mwlimits(2,2)) %Start of P2 random
         p2=mwlimits(2,2);
        fprintf('\tP2 new: %5.4f', p2);

    delta_p=pd+ploss-p1-p2-p3-p4-p5;
    summation=((input_data(1,3)+(loss_data(1,1)*input_data(1,2)))/(2*(input_data(1,3)+(lambda*loss_data(1,1)))^2))+((input_data(3,3)+(loss_data(3,3)*input_data(3,2)))/(2*(input_data(3,3)+(lambda*loss_data(3,3)))^2))+((input_data(4,3)+(loss_data(4,4)*input_data(4,2)))/(2*(input_data(4,3)+(lambda*loss_data(4,4)))^2))+((input_data(5,3)+(loss_data(5,5)*input_data(5,2)))/(2*(input_data(5,3)+(lambda*loss_data(5,5)))^2));
    fprintf('\tSummation: %5.10f\n', summation);    

else if (delta_p==0)&& (p2<mwlimits(2,1)) 
    p2=mwlimits(2,1);
    fprintf('\tP2 new: %5.4f', p2); 

    delta_p=pd+ploss-p1-p2-p3-p4-p5;
    summation=((input_data(1,3)+(loss_data(1,1)*input_data(1,2)))/(2*(input_data(1,3)+(lambda*loss_data(1,1)))^2))+((input_data(3,3)+(loss_data(3,3)*input_data(3,2)))/(2*(input_data(3,3)+(lambda*loss_data(3,3)))^2))+((input_data(4,3)+(loss_data(4,4)*input_data(4,2)))/(2*(input_data(4,3)+(lambda*loss_data(4,4)))^2))+((input_data(5,3)+(loss_data(5,5)*input_data(5,2)))/(2*(input_data(5,3)+(lambda*loss_data(5,5)))^2));
    fprintf('\tSummation: %5.10f\n', summation);    

else if(delta_p==0)&&((p2>mwlimits(2,1))&&(p2<mwlimits(2,2)))
    p2=p2;
    fprintf('\tP2 new: %5.4f', p2);

    delta_p=pd+ploss-p1-p2-p3-p4-p5;
    summation=((input_data(1,3)+(loss_data(1,1)*input_data(1,2)))/(2*(input_data(1,3)+(lambda*loss_data(1,1)))^2))+((input_data(2,3)+(loss_data(2,2)*input_data(2,2)))/(2*(input_data(2,3)+(lambda*loss_data(2,2)))^2))+((input_data(3,3)+(loss_data(3,3)*input_data(3,2)))/(2*(input_data(3,3)+(lambda*loss_data(3,3)))^2))+((input_data(4,3)+(loss_data(4,4)*input_data(4,2)))/(2*(input_data(4,3)+(lambda*loss_data(4,4)))^2))+((input_data(5,3)+(loss_data(5,5)*input_data(5,2)))/(2*(input_data(5,3)+(lambda*loss_data(5,5)))^2));
    fprintf('\tSummation: %5.10f\n', summation); 
    end    
    end    
    end  %End of p2 random 


if (delta_p==0)&& (p5>mwlimits(5,2)) %Start of P5 random
         p5=mwlimits(5,2);
        fprintf('\tP5 new: %5.4f', p5);

    delta_p=pd+ploss-p1-p2-p3-p4-p5;
    summation=((input_data(1,3)+(loss_data(1,1)*input_data(1,2)))/(2*(input_data(1,3)+(lambda*loss_data(1,1)))^2))+((input_data(2,3)+(loss_data(2,2)*input_data(2,2)))/(2*(input_data(2,3)+(lambda*loss_data(2,2)))^2))+((input_data(3,3)+(loss_data(3,3)*input_data(3,2)))/(2*(input_data(3,3)+(lambda*loss_data(3,3)))^2))+((input_data(4,3)+(loss_data(4,4)*input_data(4,2)))/(2*(input_data(4,3)+(lambda*loss_data(4,4)))^2));
    fprintf('\tSummation: %5.10f\n', summation);    

else if (delta_p==0)&& (p5<mwlimits(5,1)) 
    p5=mwlimits(5,1);
    fprintf('\tP5 new: %5.4f', p5); 

    delta_p=pd+ploss-p1-p2-p3-p4-p5;
    summation=((input_data(1,3)+(loss_data(1,1)*input_data(1,2)))/(2*(input_data(1,3)+(lambda*loss_data(1,1)))^2))+((input_data(2,3)+(loss_data(2,2)*input_data(2,2)))/(2*(input_data(2,3)+(lambda*loss_data(2,2)))^2))+((input_data(3,3)+(loss_data(3,3)*input_data(3,2)))/(2*(input_data(3,3)+(lambda*loss_data(3,3)))^2))+((input_data(4,3)+(loss_data(4,4)*input_data(4,2)))/(2*(input_data(4,3)+(lambda*loss_data(4,4)))^2));
    fprintf('\tSummation: %5.10f\n', summation);    

else if(delta_p==0)&&((p5>mwlimits(5,1))&&(p2<mwlimits(5,2)))
    p5=p5;
    fprintf('\tP5 new: %5.4f', p5);

    delta_p=pd+ploss-p1-p2-p3-p4-p5;
    summation=((input_data(1,3)+(loss_data(1,1)*input_data(1,2)))/(2*(input_data(1,3)+(lambda*loss_data(1,1)))^2))+((input_data(2,3)+(loss_data(2,2)*input_data(2,2)))/(2*(input_data(2,3)+(lambda*loss_data(2,2)))^2))+((input_data(3,3)+(loss_data(3,3)*input_data(3,2)))/(2*(input_data(3,3)+(lambda*loss_data(3,3)))^2))+((input_data(4,3)+(loss_data(4,4)*input_data(4,2)))/(2*(input_data(4,3)+(lambda*loss_data(4,4)))^2))+((input_data(5,3)+(loss_data(5,5)*input_data(5,2)))/(2*(input_data(5,3)+(lambda*loss_data(5,5)))^2));
    fprintf('\tSummation: %5.10f\n', summation); 
    end    
    end    
    end  %End of p5 random     


end
 delta_lambda= delta_p/summation;
    fprintf('\tDelta Lambda: %5.4f\n', delta_lambda);

    lambda= lambda+delta_lambda;
    fprintf('The new lambda =');disp (lambda);

i=i+1;
end

谁能帮助我确定为什么它会跳过第二个else-if语句>还是为什么它会跳过更新P5的值?非常感谢!我真的很困惑为什么它不会通过第二个条件。我真的需要这个来工作,但是我不明白为什么会那样。这实际上是一个经济调度问题,我试图在限定范围内更新/固定P5的值。

0 个答案:

没有答案