我想通过3倍交叉验证对mlr中的不同模型进行基准测试。在每一次折叠中,我都希望通过3折交叉验证再次进行操作,为每个模型选择一个特征,然后将最佳特征集传递给外部交叉验证。我注意到,MLR中的基准测试结果始终使用所有包含的功能。
如何从基准中提取每个折叠和每个模型中使用的功能,以及如何确保它们确实用于外部交叉验证折叠?
这是示例代码:
task_cv <- makeClassifTask(
id = 'predict future outages',
data = data,
target = 'targetVariable',
positive=1
)
vali_strat <- makeResampleDesc(method="CV",iters = 3)
featSelControl<- makeFeatSelControlSequential(same.resampling.instance = T,
method = "sbs",
tune.threshold = T,
alpha = 4,
beta = 4)
learner_nv <- makeLearner(
id = 'Naive Bayes',
cl = 'classif.naiveBayes'
)
learner_knn <- makeLearner(
id = 'KNN',
cl = 'classif.kknn'
)
featSel_nv <- makeFeatSelWrapper(learner = learner_nv,
resampling = vali_strat,
control = featSelControl,
measures = acc
featSel_knn <- makeFeatSelWrapper(learner = learner_knn,
resampling = vali_strat,
control = featSelControl,
measures = acc
learners <- list(featSel_nv,
featSel_knn )
benchmark = benchmark(
learners = learners,
tasks = task_cv,
resamplings = validation_strategy,
measures = acc
)
benchmark$results$`predict future outages`$KNN.featsel$models[[1]]$features
我无法提取使用的功能,并且代码的最后一行指示始终使用所有功能,而不是通过featureSelection选择的功能。