我实际上正在尝试使用Eigen中的Cholesky方法解决大型稀疏线性系统。
我已经从this site下载了一个稀疏矩阵(cfd1)。我试图求解如下定义的线性系统Ax = b:A是矩阵cfd1,b = A * xe其中xe是矩阵尺寸相同的行向量大小的矢量。总之,我想使用Matlab表示法来解决:x = A\b
。这里的代码:
#include <iostream>
#include <Eigen/Dense>
#include <unsupported/Eigen/SparseExtra>
#include<Eigen/SparseCholesky>
using namespace std;
using namespace Eigen;
int main()
{
SparseMatrix<double> mat;
VectorXd x;
loadMarket(mat, "Path of downloaded matrix");
cout << "Number of Rows:\n" << mat.rows() << endl;
ArrayXd xe = ArrayXd::Constant(mat.rows(), 1);
cout << xe << endl;
SparseVector<double> b = mat*xe;
SimplicialLLT<SparseMatrix<double> > solver;
x = solver.compute(mat).solve(b);
cout << x << endl;
}
问题在于,当我进行编译时,我得到了当前错误:
error: invalid operands to binary expression ('SparseMatrix<double>' and 'Eigen::ArrayXd' (aka 'Array<double, Dynamic, 1>')) SparseVector<double> b = mat*xe; ~~~^~~ /Users/anto/Desktop/example/eigen-eigen-323c052e1731/Eigen/src/SparseCore/../plugins/CommonCwiseBinaryOps.h:50:29: note: candidate function template not viable: no known conversion from 'Eigen::ArrayXd' (aka 'Array<double, Dynamic, 1>') to 'const Eigen::SparseMatrixBase<Eigen::SparseMatrix<double, 0, int> >::StorageBaseType' (aka 'const Eigen::SparseMatrixBase<Eigen::SparseMatrix<double, 0, int> >') for 2nd argument
有人可以帮我修复它吗?
答案 0 :(得分:0)
两件事:
Array
和Matrix
,即用ArrayXd
代替VectorXd
。VectorXd
而不是SparseVector
以下编译
SparseMatrix<double> mat;
loadMarket(mat, "Path of downloaded matrix");
cout << "Number of Rows:\n" << mat.rows() << endl;
VectorXd xe = VectorXd::Constant(mat.rows(), 1);
cout << xe << endl;
VectorXd b = mat*xe;
SimplicialLLT<SparseMatrix<double> > solver;
VectorXd x = solver.compute(mat).solve(b);
cout << x << endl;