from sklearn.model_selection
import GridSearchCV
params = {
'decisiontreeclassifier__max_depth': [1, 2],
'pipeline-1__clf__C': [0.001, 0.1, 100.0]
}
grid = GridSearchCV(estimator = mv_clf,
param_grid = params,
cv = 10,
scoring = 'roc_auc')
grid.fit(X_train, y_train)
for params, mean_score, scores in grid.grid_scores_:
print("%0.3f+/-%0.2f %r" %
(mean_score, scores.std() / 2, params))
#AttributeError: 'GridSearchCV' object has no attribute 'grid_scores_'
尝试将grid.grid_scores_
替换为grid.cv_results_
目的是打印出不同的超参数值组合以及通过10倍交叉验证计算出的平均ROC AUC得分
from sklearn.model_selection
import GridSearchCV
params = {
'decisiontreeclassifier__max_depth': [1, 2],
'pipeline-1__clf__C': [0.001, 0.1, 100.0]
}
grid = GridSearchCV(estimator = mv_clf,
param_grid = params,
cv = 10,
scoring = 'roc_auc')
grid.fit(X_train, y_train)
for params, mean_score, scores in grid.grid_scores_:
print("%0.3f+/-%0.2f %r" %
(mean_score, scores.std() / 2, params))
#AttributeError: 'GridSearchCV' object has no attribute 'grid_scores_'
答案 0 :(得分:2)
在最新的scitkit-learn libaray中, grid_scores _ 已被贬值,并已由 cv_results _
取代cv_results_提供了网格搜索运行的详细结果。
grid.cv_results_.keys()
Output: dict_keys(['mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time', 'param_n_estimators', 'params', 'split0_test_score',
'split1_test_score', 'split2_test_score', 'split3_test_score', 'split4_test_score',
'mean_test_score', 'std_test_score', 'rank_test_score'])
cv_results_提供了与grid_score相比的详细输出。结果输出为字典形式。我们可以通过对字典键进行迭代来从字典中提取相关指标。以下是对cv = 5
运行网格搜索的示例 for i in ['mean_test_score', 'std_test_score', 'param_n_estimators']:
print(i," : ",grid.cv_results_[i])
Output: mean_test_score : [0.833 0.83 0.83 0.837 0.838 0.8381 0.83]
std_test_score : [0.011 0.009 0.010 0.0106 0.010 0.0102 0.0099]
param_n_estimators : [20 30 40 50 60 70 80]