我正在为kafka消费者创建自定义解串器。但我受到打击例外-
2019-04-05 16:36:51.064 ERROR 13256 --- [ntainer#0-0-C-1] o.s.kafka.listener.LoggingErrorHandler : Error while processing: ConsumerRecord(topic = freshTopic, partition = 0, offset = 229860, CreateTime = 1554462411064, serialized key size = -1, serialized value size = 214, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = {"date":null,"deviceAddress":"10.95.251.8","iPAddress":" ","userName":"z-nbpvs1","group":" ","eventCategoryName":"User.Activity.Privileged Use.Successful","message":"User authentication succeeded: Uname: z-nbpvs1"})
org.springframework.kafka.listener.ListenerExecutionFailedException: Listener method could not be invoked with the incoming message
Endpoint handler details:
Method [public void com.test.engine.RawEventConsumer.consume(com.test.models.CSVDataModel) throws java.io.IOException]
Bean [com.test.engine.RawEventConsumer@31e130bf]; nested exception is org.springframework.messaging.converter.MessageConversionException: Cannot handle message; nested exception is org.springframework.messaging.converter.MessageConversionException: Cannot convert from [java.lang.String] to [com.test.models.CSVDataModel] for GenericMessage [payload={"date":null,"deviceAddress":"10.95.251.8","iPAddress":" ","userName":"z-nbpvs1","group":" ","eventCategoryName":"User.Activity.Privileged Use.Successful","message":"User authentication succeeded: Uname: z-nbpvs1"}, headers={kafka_offset=229860, kafka_consumer=org.apache.kafka.clients.consumer.KafkaConsumer@7773cad2, kafka_timestampType=CREATE_TIME, kafka_receivedMessageKey=null, kafka_receivedPartitionId=0, kafka_receivedTopic=freshTopic, kafka_receivedTimestamp=1554462411064}], failedMessage=GenericMessage [payload={"date":null,"deviceAddress":"10.95.251.8","iPAddress":" ","userName":"z-nbpvs1","group":" ","eventCategoryName":"User.Activity.Privileged Use.Successful","message":"User authentication succeeded: Uname: z-nbpvs1"}, headers={kafka_offset=229860, kafka_consumer=org.apache.kafka.clients.consumer.KafkaConsumer@7773cad2, kafka_timestampType=CREATE_TIME, kafka_receivedMessageKey=null, kafka_receivedPartitionId=0, kafka_receivedTopic=freshTopic, kafka_receivedTimestamp=1554462411064}]
Kafka生产者代码-
Properties producerProperities = new Properties();
producerProperities.setProperty("bootstrap.servers", "127.0.0.1:9092");
producerProperities.setProperty("acks", "1");
producerProperities.setProperty("retries", "10");
producerProperities.setProperty("key.serializer", StringSerializer.class.getName());
producerProperities.setProperty("value.serializer", CSVDataModelSerializer.class.getName());
try(Producer<String, CSVDataModel> producer = new KafkaProducer<>(producerProperities)){
producer.send(new ProducerRecord<String, CSVDataModel>(TOPIC, dataModel));
}catch(Exception e) {
e.printStackTrace();
}
Kafka消费者代码-
@KafkaListener(topics = "freshTopic", groupId = "group_id")
public void consume(CSVDataModel dataModel) throws IOException {
Properties producerProperities = new Properties();
producerProperities.setProperty("key.deserializer", StringDeserializer.class.getName());
producerProperities.setProperty("value.deserializer", CSVDataModelDeSerializer.class.getName());
try (KafkaConsumer<String, CSVDataModel> consumer = new KafkaConsumer<>(producerProperities)) {
// consumer.subscribe(Collections.singletonList("freshTopic"));
while (true) {
ConsumerRecords<String, CSVDataModel> messages = consumer.poll(100);
for (ConsumerRecord<String, CSVDataModel> message : messages) {
System.out.println("Message received " + message.value().toString());
}
}
} catch (Exception e) {
e.printStackTrace();
}
}
我还编写了自定义序列化器和反序列化器。
序列化器-
@Override
public byte[] serialize(String topic, CSVDataModel data) {
byte[] retVal = null;
ObjectMapper objectMapper = new ObjectMapper();
try {
retVal = objectMapper.writeValueAsString(data).getBytes();
} catch (Exception e) {
e.printStackTrace();
}
return retVal;
}
解串器-
@Override
public CSVDataModel deserialize(String topic, byte[] data) {
ObjectMapper mapper = new ObjectMapper();
CSVDataModel csvDataModel = null;
try {
csvDataModel = mapper.readValue(data, CSVDataModel.class);
} catch (Exception e) {
e.printStackTrace();
}
return csvDataModel;
}
有人可以告诉我我在做什么错吗?