接收合并运算符和并行执行

时间:2019-04-05 10:42:13

标签: system.reactive rx.net

为什么.Merge运算符的行为类似于.Synchronize

我有两个事件流,每个事件流在不同的线程中发出值(例如,使用Observable.Interval)。

使用.Merge运算符后,它们将彼此锁定在long运算符中(合并后只有一个操作并行运行,例如.Synchronize()操作中)。为什么会这样?

var xs1 = Observable.Interval(TimeSpan.FromSeconds(1))
        .Select(x => $"xs1 : {x}").Log("xs1 generating");
var xs2 = Observable.Interval(TimeSpan.FromSeconds(1))
        .Select(x => $"xs1 : {x}").Log("xs2 generating");

xs1.Merge(xs2)
        .Do(x=> Thread.Sleep(2_000))
        .SubscribeConsoleWithThreads("after long work");

产生以下结果:

13:44:14 thread 4 xs1 generating : "xs1 : 0"
13:44:14 thread 5 xs2 generating : "xs2 : 0"
13:44:16 thread 4 after long work: "xs1 : 0"
13:44:16 thread 4 xs1 generating : "xs1 : 1"
13:44:18 thread 5 after long work: "xs2 : 0"
13:44:18 thread 5 xs2 generating : "xs2 : 1"
13:44:20 thread 4 after long work: "xs1 : 1"
13:44:20 thread 4 xs1 generating : "xs1 : 2"

如您所见,值“ xs1:0”和“ xs2:0”是从两个流并行生成的,但是之后,它们是一个一个地生成的。

可以在不锁定并行执行的情况下合并到一个Observable吗?

1 个答案:

答案 0 :(得分:0)

那是Rx的合同。产生零个或多个值,一次一个,并可选地以单个OnError或单个OnCompleted结尾。

.Synchronize()运算符在那里强制执行不符合要求的可观察对象以符合要求。

调用xs1.Merge(xs2)不会“锁定并行执行”。这两个源的执行彼此独立。 Rx只确保一次输出一个值,这样就不会出现并发问题。

您的代码存在的问题是合并后的计算。如果您在合并生活之前做好工作,那么会更好。

比较这些:

var xs1 =
    Observable
        .Interval(TimeSpan.FromSeconds(1.0))
        .Select(x => new { source = 1, value = x })
        .Timestamp()
        .Select(x => new { x.Value.source, x.Value.value, generated = x.Timestamp });

var xs2 =
    Observable
        .Interval(TimeSpan.FromSeconds(1.0))
        .Select(x => new { source = 2, value = x })
        .Timestamp()
        .Select(x => new { x.Value.source, x.Value.value, generated = x.Timestamp });

xs1.Merge(xs2)
        .Do(x=> Thread.Sleep(2_000))
        .Timestamp()
        .Select(x => new { x.Value.source, x.Value.value, x.Value.generated, output = x.Timestamp })
        .Subscribe(x => Console.WriteLine($"{x.source}: {x.value} - {x.generated.ToString("ss.fff")} - {x.output.ToString("ss.fff")}"));

这将产生:

1: 0 - 18.875 - 20.877
2: 0 - 18.884 - 22.882
1: 1 - 20.881 - 24.883
2: 1 - 22.882 - 26.884
1: 2 - 24.883 - 28.884
2: 2 - 26.884 - 30.884
1: 3 - 28.884 - 32.886
2: 3 - 30.884 - 34.887
1: 4 - 32.886 - 36.887
2: 4 - 34.887 - 38.887

然后这个:

var xs1 =
    Observable
        .Interval(TimeSpan.FromSeconds(1.0))
        .Select(x => new { source = 1, value = x })
        .Timestamp()
        .Select(x => new { x.Value.source, x.Value.value, generated = x.Timestamp })
        .Do(x=> Thread.Sleep(2_000));

var xs2 =
    Observable
        .Interval(TimeSpan.FromSeconds(1.0))
        .Select(x => new { source = 2, value = x })
        .Timestamp()
        .Select(x => new { x.Value.source, x.Value.value, generated = x.Timestamp })
        .Do(x=> Thread.Sleep(2_000));

xs1.Merge(xs2)
        .Timestamp()
        .Select(x => new { x.Value.source, x.Value.value, x.Value.generated, output = x.Timestamp })
        .Subscribe(x => Console.WriteLine($"{x.source}: {x.value} - {x.generated.ToString("ss.fff")} - {x.output.ToString("ss.fff")}"));

给出:

1: 0 - 29.178 - 31.182
2: 0 - 29.180 - 31.201
1: 1 - 31.201 - 33.202
2: 1 - 31.201 - 33.202
2: 2 - 33.202 - 35.203
1: 2 - 33.202 - 35.203
1: 3 - 35.203 - 37.204
2: 3 - 35.203 - 37.204
1: 4 - 37.204 - 39.205
2: 4 - 37.204 - 39.205

那是可观察物输出速度的两倍。