如何实现一种热编码的生成器功能

时间:2019-04-05 03:55:53

标签: python deep-learning generator one-hot-encoding

我实现了一个生成器函数来生成一个热编码矢量,但是生成器实际上抛出了错误

我去使用生成器函数来产生一个热编码向量,因为后者将用作深度学习lstm模型的输入。我这样做是为了避免在尝试对非常大的数据集创建热编码时出现过多的负载和内存故障。但是,生成器功能没有出现错误。我需要帮助找出我要去哪里。

之前的代码:

X = np.zeros((len(sequences), seq_length, vocab_size), dtype=np.bool)
y = np.zeros((len(sequences), vocab_size), dtype=np.bool)
for i, sentence in enumerate(sequences):
    for t, word in enumerate(sentence):
        X[i, t, vocab[word]] = 1
    y[i, vocab[next_words[i]]] = 1

在这里

sequences = sentences generated from data set
seq_length = length of each sentence(this is constant)
vocab_size = number of unique words in dictionary

My program when run on the large data set produces,

sequences = 44073315
seq_length = 30
vocab_size = 124958

因此,当上面的代码直接用于后面的输入时,就会产生beloe错误。

Traceback (most recent call last):
  File "1.py", line 206, in <module>
    X = np.zeros((len(sequences), seq_length, vocab_size), dtype=np.bool)
MemoryError
(my_env) [rjagannath1@login ~]$

所以,我尝试创建一个生成器函数(用于测试),如下所示-

def gen(batch_size, no_of_sequences, seq_length, vocab_size):
    bs = batch_size
    ns = no_of_sequences
    X = np.zeros((batch_size, seq_length, vocab_size), dtype=np.bool)
    y = np.zeros((batch_size, vocab_size), dtype=np.bool)
    while(ns > bs):
        for i, sentence in enumerate(sequences):
            for t, word in enumerate(sentence):
                X[i, t, vocab[word]] = 1
            y[i, vocab[next_words[i]]] = 1
        print(X.shape())
        print(y.shape())
        yield(X, y)
        ns = ns - bs 

for item in gen(1000, 44073315, 30, 124958):
    print(item) 

但是我收到以下错误-

File "path_of_file", line 247, in gen
    X[i, t, vocab[word]] = 1

IndexError: index 1000 is out of bounds for axis 0 with size 1000

我在生成器函数中犯了什么错误?

1 个答案:

答案 0 :(得分:1)

在生成器中进行以下修改:

batch_i = 0
while(ns > bs):
    s = batch_i*batch_size
    e = (batch_i+1)*batch_size
    for i, sentence in enumerate(sequences[s:e]):

基本上,您希望在batch_size大小的窗口上运行,因此您正在通过sequences来创建运行切片,这似乎是您的整个数据集。

您还必须增加batch_i,将其放在yield之后,因此添加 batch_i+=1