在这个问题中所示的玩具示例的相同结构中,我有两个大列表。
dput(head(list1)):
list(FEB_GAMES = c(GAME1 = c("Stan", "Kenny", "Cartman", "Kyle",
"Butters"), GAME2 = c("Kenny", "Cartman", "Kyle", "Butters")),
MAR_GAMES = c(GAME3 = c("Stan", "Kenny", "Cartman", "Butters"
), GAME4 = c("Kenny", "Cartman", "Kyle", "Butters")))
dput(head(list2)):
list(first = c("Stan", "Kenny", "Cartman", "Kyle", "Butters",
"Kenny", "Cartman", "Kyle", "Butters"), second = c("Stan", "Kenny",
"Cartman", "Wendy", "Ike"), third = c("Randy", "Randy", "Randy",
"Randy"))
我想将这两个列表变成一个大的data.frame /矩阵。行名将来自列表1(GAME1,GAME2,GAME3,GAME4)。别名将是列表2(第一,第二,第三)的列表名称。矩阵中的信息将是一个整数,它表示在两个列表中找到一个公共字符的次数。例如GAME1xfirst包含9个常见字符,而GAME1xthird包含0个常见字符。
输出看起来像这样:
first second third
GAME1 9 3 0
GAME2 8 2 0
GAME3 8 3 0
GAME4 8 2 0
因此[1,1]中的值将是在列表1的GAME1列表和列表2中的第一个列表中找到一个公共字符的时间之和。
注意。列表1和列表2中的列表具有不同数量的值。
答案 0 :(得分:2)
一种选择是先展平'list1',转换为merge
后再做data.frame
,然后再做table
list1a <- do.call(c, list1)
names(list1a) <- sub(".*\\.", "", names(list1a))
out <- table(merge(stack(list1a), stack(list2), by = 'values')[-1])
names(dimnames(out)) <- NULL
out
# first second third
#GAME1 9 3 0
#GAME2 8 2 0
#GAME3 7 3 0
#GAME4 8 2 0
我们也可以在tidyverse
中使用相同的逻辑
library(tidyverse)
list1 %>%
flatten %>%
enframe %>%
unnest %>%
full_join(list2 %>%
enframe %>%
unnest, by = 'value') %>%
select(-value) %>%
count(name.x, name.y) %>%
spread(name.y, n, fill = 0) %>%
filter(!is.na(name.x))
# A tibble: 4 x 4
# name.x first second third
# <chr> <dbl> <dbl> <dbl>
#1 GAME1 9 3 0
#2 GAME2 8 2 0
#3 GAME3 7 3 0
#4 GAME4 8 2 0
list1 <- list(FEB_games = list(GAME1 = c("Stan", "Kenny", "Cartman", "Kyle",
"Butters"), GAME2 = c("Kenny", "Cartman", "Kyle", "Butters")),
MAR_games = list(GAME3 = c("Stan", "Kenny", "Cartman", "Butters"
), GAME4 = c("Kenny", "Cartman", "Kyle", "Butters")))
list2 <- list(first = c("Stan", "Kenny", "Cartman", "Kyle", "Butters",
"Kenny", "Cartman", "Kyle", "Butters"), second = c("Stan", "Kenny",
"Cartman", "Wendy", "Ike"), third = c("Randy", "Randy", "Randy",
"Randy"))
答案 1 :(得分:2)
怎么样...
sapply(l2, function(x) {
sapply(unlist(l1, recursive = FALSE), function(y) sum(x %in% y))
})
# first second third
# FEB_games.GAME1 9 3 0
# FEB_games.GAME2 8 2 0
# MAR_games.GAME3 7 3 0
# MAR_games.GAME4 8 2 0
不过,它可能不是最有效的方法。