我有一个带有URL列表的数据框,我想为其提取几个值。然后应将返回的键/值添加到原始数据帧中,并将键作为新列和相应的值。
我认为这会神奇发生
result_type='expand'
,显然不是。当我尝试
df5["data"] = df5.apply(lambda x: request_function(x['url']),axis=1, result_type='expand')
我最终将结果全部放在一个数据列中
[{'title': ['Python Notebooks: Connect to Google Search Console API and Extract Data - Adapt'], 'description': []}]
我想要的结果是一个包含以下3列的数据框:
| URL| Title | Description|
这是我的代码:
import requests
from requests_html import HTMLSession
import pandas as pd
from urllib import parse
ex_dic = {'url': ['https://www.searchenginejournal.com/reorganizing-xml-sitemaps-python/295539/', 'https://searchengineland.com/check-urls-indexed-google-using-python-259773', 'https://adaptpartners.com/technical-seo/python-notebooks-connect-to-google-search-console-api-and-extract-data/']}
df5 = pd.DataFrame(ex_dic)
df5
def request_function(url):
try:
found_results = []
r = session.get(url)
title = r.html.xpath('//title/text()')
description = r.html.xpath("//meta[@name='description']/@content")
found_results.append({ 'title': title, 'description': description})
return found_results
except requests.RequestException:
print("Connectivity error")
except (KeyError):
print("anoter error")
df5.apply(lambda x: request_function(x['url']),axis=1, result_type='expand')
答案 0 :(得分:0)
ex_dic
应该是字典列表,以便您可以更新所应用的属性。
import requests
from requests_html import HTMLSession
import pandas as pd
from urllib import parse
ex_dic = {'url': ['https://www.searchenginejournal.com/reorganizing-xml-sitemaps-python/295539/', 'https://searchengineland.com/check-urls-indexed-google-using-python-259773', 'https://adaptpartners.com/technical-seo/python-notebooks-connect-to-google-search-console-api-and-extract-data/']}
ex_dic['url'] = [{'url': item} for item in ex_dic['url']]
df5 = pd.DataFrame(ex_dic)
session = HTMLSession()
def request_function(url):
try:
print(url)
r = session.get(url['url'])
title = r.html.xpath('//title/text()')
description = r.html.xpath("//meta[@name='description']/@content")
url.update({ 'title': title, 'description': description})
return url
except requests.RequestException:
print("Connectivity error")
except (KeyError):
print("anoter error")
df6 = df5.apply(lambda x: request_function(x['url']),axis=1, result_type='expand')
print df6
答案 1 :(得分:0)
如果您的函数仅返回字典,而不返回字典列表,则它实际上可以按您期望的方式工作。此外,密钥内部仅提供一个字符串,而不是列表。然后,它会按您的预期工作。参见我的示例代码:
import requests
import pandas as pd
from urllib import parse
ex_dic = {'url': ['https://www.searchenginejournal.com/reorganizing-xml-sitemaps-python/295539/', 'https://searchengineland.com/check-urls-indexed-google-using-python-259773', 'https://adaptpartners.com/technical-seo/python-notebooks-connect-to-google-search-console-api-and-extract-data/']}
df5 = pd.DataFrame(ex_dic)
#rint(df5)
def request_function(url):
return {'title': 'Python Notebooks: Connect to Google Search Console API and Extract Data - Adapt',
'description': ''}
df6 = df5.apply(lambda x: request_function(x['url']), axis=1, result_type='expand')
df7 = pd.concat([df5,df6],1)
df7
给你这个:
您还可以调整Lambda函数:
df6 = df5.apply(lambda x: request_function(x['url'])[0], axis=1, result_type='expand')
但是您仍然需要确保键值是字符串,而不是列表。