DT = data.table(x=rep(c("b","a","c"),each=3), y=c(1,3,6), v=1:9)
# Desired output
rbind(cbind(id = "v", DT[x == "a", as.list(quantile(.SD, prob = c(0.05, .5, 0.95), na.rm = T)), by = x, .SDcols = c("v")]),
cbind(id = "y", DT[x == "a", as.list(quantile(.SD, prob = c(0.05, .5, 0.95), na.rm = T)), by = x, .SDcols = c("y")]),
cbind(id = "v", DT[x == "b", as.list(quantile(.SD, prob = c(0.05, .5, 0.95), na.rm = T)), by = x, .SDcols = c("v")]),
cbind(id = "y", DT[x == "b", as.list(quantile(.SD, prob = c(0.05, .5, 0.95), na.rm = T)), by = x, .SDcols = c("y")]),
cbind(id = "v", DT[x == "c", as.list(quantile(.SD, prob = c(0.05, .5, 0.95), na.rm = T)), by = x, .SDcols = c("v")]),
cbind(id = "y", DT[x == "c", as.list(quantile(.SD, prob = c(0.05, .5, 0.95), na.rm = T)), by = x, .SDcols = c("y")])
)
# id x 5% 50% 95%
# 1: v a 4.1 5 5.9
# 2: y a 1.2 3 5.7
# 3: v b 1.1 2 2.9
# 4: y b 1.2 3 5.7
# 5: v c 7.1 8 8.9
# 6: y c 1.2 3 5.7
如何使用data.table(在内存中只有几GB)在一个非常大的数据集上最好地实现上述输出?我已经尝试过了,但这不是我想要的
# not right, want all 3 percentiles on the same row, for x and then y:
out <- DT[ , lapply(.SD, quantile, prob = c(0.05, .5, 0.95), na.rm = T), .SDcols = c("v", "y"), keyby = "x"]
out
然后如何获得上面想要的输出,但是id分布在各列中,因此它变成3 x 6的data.table。例如具有3行的v5%v50%v95%y5%y50%y95%列。
答案 0 :(得分:2)
您可以使用melt/dcast
来实现:
dcast(melt(out[, p := paste0(c(5, 50, 95), "%")],
c("p", "x"),
variable.name = "id"),
id + x ~ ...)[order(x, id)]
# id x 5% 50% 95%
# 1: v a 4.1 5 5.9
# 2: y a 1.2 3 5.7
# 3: v b 1.1 2 2.9
# 4: y b 1.2 3 5.7
# 5: v c 7.1 8 8.9
# 6: y c 1.2 3 5.7
另一个没有中间结果的选项;
melt(DT[, v := as.numeric(v)],
"x",
c("v", "y"),
variable.name = "id")[, as.list(quantile(value,
prob = c(.05, .5, .95))),
.(x, id)][order(x, id)]
# x id 5% 50% 95%
# 1: a v 4.1 5 5.9
# 2: a y 1.2 3 5.7
# 3: b v 1.1 2 2.9
# 4: b y 1.2 3 5.7
# 5: c v 7.1 8 8.9
# 6: c y 1.2 3 5.7
注意。我将列v
转换为numeric
(从int
)以避免来自melt
的讨厌警告。