由于值错误,无法迭代熊猫数据框的分组值。
我考虑的df是
df:
class section sub marks school city
0 I A Eng 80 jghss salem
1 I A Mat 90 jghss salem
2 I A Eng 50 jghss salem
3 III A Eng 80 gphss salem
4 III A Mat 45 gphss salem
5 III A Eng 40 gphss salem
6 III A Eng 20 gphss salem
7 III A Mat 55 gphss salem
我将列的值(即“ sub”和“ marks”)分组为列表,
df_grp = df.groupby(['class','section','school','city']).agg(lambda x: list(x))
df_grp是
class section school city sub marks
I A jghss salem [Eng, Mat, Eng] [80, 90, 50]
III A gphss salem [Eng, Mat, Eng, Eng, Mat] [80, 45, 40, 20, 55]
现在我需要迭代df_grp,以便提取所有列的值,例如
Row 1:-
class = I
section = A
school = jghss
city = salem
sub = [Eng, Mat, Eng]
marks = [80, 90, 50]
Row 2:-
class = III
section = A
school = gphss
city = salem
sub = [Eng, Mat, Eng, Eng, Mat]
marks = [80, 45, 40, 20, 55]
现在要迭代df_grp以提取列值,我已经使用
for index,group in df_grp:
for subIndex, row in group.iterrows():
sub = row['sub']
marks = row['marks']
当我使用它时,它会返回
ValueError: too many values to unpack (expected 2)
答案 0 :(得分:2)
import pandas as pd
df1 = pd.DataFrame({
'atable': ['Users', 'Users', 'Domains', 'Domains', 'Locks'],
'column': ['col_1', 'col_2', 'col_a', 'col_b', 'col'],
'column_type':['varchar', 'varchar', 'int', 'varchar', 'varchar'],
'is_null': ['No', 'No', 'Yes', 'No', 'Yes'],
})
df1_grouped = df1.groupby('atable').agg(lambda x: list(x))
for row in df1_grouped.iterrows():
print(row[1].column)
这里是一个示例,它将返回第一列数据
groupby方法已经返回了数据帧,您无法再次循环。