假设我有一个python函数,其单个参数为非平凡类型:
from typing import List, Dict
ArgType = List[Dict[str, int]] # this could be any non-trivial type
def myfun(a: ArgType) -> None:
...
...然后我有一个从JSON源解压缩的数据结构:
import json
data = json.loads(...)
我的问题是:如何在运行时检查 data
是否具有正确的类型以用作myfun()
的参数,然后再将其用作{ {1}}?
myfun()
答案 0 :(得分:3)
没有内置函数是很尴尬的,但是 typeguard
带有一个方便的 configure({ adapter: new Adapter() });
const mockStore = configureMockStore();
const store = mockStore();
describe("test", () => {
it("test", () => {
const wrapper = mount(
<Provider store={store}>
<RecoilRoot>
<Dashboard />
</RecoilRoot>
</Provider>
);
});
});
函数:
<RecoilRoot>
更多信息请参见:https://typeguard.readthedocs.io/en/latest/api.html#typeguard.check_type
答案 1 :(得分:1)
首先,即使我认为您已经意识到,但出于完整性考虑,类型库包含用于类型提示的类型。这些类型提示由IDE用来检查您的代码是否合理,并作为文档说明开发人员期望的类型。
要检查变量是否是某种类型的东西,我们必须使用isinstance函数。令人惊讶的是,我们可以使用类型库函数的直接类型,例如。
from typing import List
value = []
isinstance(value, List)
但是,对于List[Dict[str, int]]
之类的嵌套结构,我们不能直接使用它,因为您很有趣地得到TypeError。您要做的是:
不幸的是,严格检查python有点麻烦。但是,请注意python使用了鸭子输入:如果它像鸭子一样,并且表现得像鸭子,那么它绝对是鸭子。
答案 2 :(得分:1)
处理此问题的常用方法是利用以下事实:如果您传递给myfun
的任何对象均不具有所需的功能,则会引发相应的异常(通常为TypeError
或{ {1}})。因此,您将执行以下操作:
AttributeError
您在问题中指出,如果传递的对象没有适当的结构,则Python将为您提供try:
myfun(data)
except (TypeError, AttributeError) as err:
# Fallback for invalid types here.
。关键问题是如何处理这种情况。如果合适,也可以将TypeError
块移到try / except
中。在Python中键入内容时,通常需要依靠duck typing:如果对象具有所需的功能,则只要它能满足目的,您就不必在意它是什么类型。
请考虑以下示例。我们只是将数据传递到函数中,然后免费获得myfun
(然后我们可以除外);无需手动类型检查:
AttributeError
如果您担心产生的错误的有用性,您仍然可以排除然后重新引发自定义异常(甚至更改异常的消息):
>>> def myfun(data):
... for x in data:
... print(x.items())
...
>>> data = json.loads('[[["a", 1], ["b", 2]], [["c", 3], ["d", 4]]]')
>>> myfun(data)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in myfun
AttributeError: 'list' object has no attribute 'items'
使用第三方代码时,应始终检查文档中是否会引发异常。例如,numpy.inner
报告说在某些情况下它将引发try:
myfun(data)
except (TypeError, AttributeError) as err:
raise TypeError('Data has incorrect structure') from err
try:
myfun(data)
except (TypeError, AttributeError) as err:
err.args = ('Data has incorrect structure',)
raise
。当使用该函数时,我们不需要自己执行任何检查,而是依赖于这样的事实:如果需要,它将引发错误。当使用第三方代码时,不清楚在某些极端情况下,i.m.o。只需硬编码相应的类型检查器(请参见下文),而不是使用适用于任何类型的通用解决方案,就更加容易和清楚。无论如何,这些情况应该很少见,留下相应的评论会让您的开发人员知道这种情况。
ValueError
库用于类型提示,因此它不会在运行时检查类型。当然,您可以手动执行此操作,但这很麻烦:
typing
将此与适当的注释一起仍然是可以接受的解决方案,并且在需要类似数据结构的地方可以重用。意图很明确,代码很容易验证。
答案 3 :(得分:1)
验证类型注释是一项艰巨的任务。 Python不会自动执行此操作,并且编写自己的验证器很困难,因为typing
模块没有提供很多有用的接口。 (实际上,typing
模块的内部自从python 3.5引入以来已经发生了很大变化,说实话,这是一场噩梦。)
这是一个类型验证器函数,该函数取自我的一个个人项目(代码警告墙):
import inspect
import typing
__all__ = ['is_instance', 'is_subtype', 'python_type', 'is_generic', 'is_base_generic', 'is_qualified_generic']
if hasattr(typing, '_GenericAlias'):
# python 3.7
def _is_generic(cls):
if isinstance(cls, typing._GenericAlias):
return True
if isinstance(cls, typing._SpecialForm):
return cls not in {typing.Any}
return False
def _is_base_generic(cls):
if isinstance(cls, typing._GenericAlias):
if cls.__origin__ in {typing.Generic, typing._Protocol}:
return False
if isinstance(cls, typing._VariadicGenericAlias):
return True
return len(cls.__parameters__) > 0
if isinstance(cls, typing._SpecialForm):
return cls._name in {'ClassVar', 'Union', 'Optional'}
return False
def _get_base_generic(cls):
# subclasses of Generic will have their _name set to None, but
# their __origin__ will point to the base generic
if cls._name is None:
return cls.__origin__
else:
return getattr(typing, cls._name)
def _get_python_type(cls):
"""
Like `python_type`, but only works with `typing` classes.
"""
return cls.__origin__
def _get_name(cls):
return cls._name
else:
# python <3.7
if hasattr(typing, '_Union'):
# python 3.6
def _is_generic(cls):
if isinstance(cls, (typing.GenericMeta, typing._Union, typing._Optional, typing._ClassVar)):
return True
return False
def _is_base_generic(cls):
if isinstance(cls, (typing.GenericMeta, typing._Union)):
return cls.__args__ in {None, ()}
if isinstance(cls, typing._Optional):
return True
return False
else:
# python 3.5
def _is_generic(cls):
if isinstance(cls, (typing.GenericMeta, typing.UnionMeta, typing.OptionalMeta, typing.CallableMeta, typing.TupleMeta)):
return True
return False
def _is_base_generic(cls):
if isinstance(cls, typing.GenericMeta):
return all(isinstance(arg, typing.TypeVar) for arg in cls.__parameters__)
if isinstance(cls, typing.UnionMeta):
return cls.__union_params__ is None
if isinstance(cls, typing.TupleMeta):
return cls.__tuple_params__ is None
if isinstance(cls, typing.CallableMeta):
return cls.__args__ is None
if isinstance(cls, typing.OptionalMeta):
return True
return False
def _get_base_generic(cls):
try:
return cls.__origin__
except AttributeError:
pass
name = type(cls).__name__
if not name.endswith('Meta'):
raise NotImplementedError("Cannot determine base of {}".format(cls))
name = name[:-4]
return getattr(typing, name)
def _get_python_type(cls):
"""
Like `python_type`, but only works with `typing` classes.
"""
# Many classes actually reference their corresponding abstract base class from the abc module
# instead of their builtin variant (i.e. typing.List references MutableSequence instead of list).
# We're interested in the builtin class (if any), so we'll traverse the MRO and look for it there.
for typ in cls.mro():
if typ.__module__ == 'builtins' and typ is not object:
return typ
try:
return cls.__extra__
except AttributeError:
pass
if is_qualified_generic(cls):
cls = get_base_generic(cls)
if cls is typing.Tuple:
return tuple
raise NotImplementedError("Cannot determine python type of {}".format(cls))
def _get_name(cls):
try:
return cls.__name__
except AttributeError:
return type(cls).__name__[1:]
if hasattr(typing.List, '__args__'):
# python 3.6+
def _get_subtypes(cls):
subtypes = cls.__args__
if get_base_generic(cls) is typing.Callable:
if len(subtypes) != 2 or subtypes[0] is not ...:
subtypes = (subtypes[:-1], subtypes[-1])
return subtypes
else:
# python 3.5
def _get_subtypes(cls):
if isinstance(cls, typing.CallableMeta):
if cls.__args__ is None:
return ()
return cls.__args__, cls.__result__
for name in ['__parameters__', '__union_params__', '__tuple_params__']:
try:
subtypes = getattr(cls, name)
break
except AttributeError:
pass
else:
raise NotImplementedError("Cannot extract subtypes from {}".format(cls))
subtypes = [typ for typ in subtypes if not isinstance(typ, typing.TypeVar)]
return subtypes
def is_generic(cls):
"""
Detects any kind of generic, for example `List` or `List[int]`. This includes "special" types like
Union and Tuple - anything that's subscriptable, basically.
"""
return _is_generic(cls)
def is_base_generic(cls):
"""
Detects generic base classes, for example `List` (but not `List[int]`)
"""
return _is_base_generic(cls)
def is_qualified_generic(cls):
"""
Detects generics with arguments, for example `List[int]` (but not `List`)
"""
return is_generic(cls) and not is_base_generic(cls)
def get_base_generic(cls):
if not is_qualified_generic(cls):
raise TypeError('{} is not a qualified Generic and thus has no base'.format(cls))
return _get_base_generic(cls)
def get_subtypes(cls):
return _get_subtypes(cls)
def _instancecheck_iterable(iterable, type_args):
if len(type_args) != 1:
raise TypeError("Generic iterables must have exactly 1 type argument; found {}".format(type_args))
type_ = type_args[0]
return all(is_instance(val, type_) for val in iterable)
def _instancecheck_mapping(mapping, type_args):
return _instancecheck_itemsview(mapping.items(), type_args)
def _instancecheck_itemsview(itemsview, type_args):
if len(type_args) != 2:
raise TypeError("Generic mappings must have exactly 2 type arguments; found {}".format(type_args))
key_type, value_type = type_args
return all(is_instance(key, key_type) and is_instance(val, value_type) for key, val in itemsview)
def _instancecheck_tuple(tup, type_args):
if len(tup) != len(type_args):
return False
return all(is_instance(val, type_) for val, type_ in zip(tup, type_args))
_ORIGIN_TYPE_CHECKERS = {}
for class_path, check_func in {
# iterables
'typing.Container': _instancecheck_iterable,
'typing.Collection': _instancecheck_iterable,
'typing.AbstractSet': _instancecheck_iterable,
'typing.MutableSet': _instancecheck_iterable,
'typing.Sequence': _instancecheck_iterable,
'typing.MutableSequence': _instancecheck_iterable,
'typing.ByteString': _instancecheck_iterable,
'typing.Deque': _instancecheck_iterable,
'typing.List': _instancecheck_iterable,
'typing.Set': _instancecheck_iterable,
'typing.FrozenSet': _instancecheck_iterable,
'typing.KeysView': _instancecheck_iterable,
'typing.ValuesView': _instancecheck_iterable,
'typing.AsyncIterable': _instancecheck_iterable,
# mappings
'typing.Mapping': _instancecheck_mapping,
'typing.MutableMapping': _instancecheck_mapping,
'typing.MappingView': _instancecheck_mapping,
'typing.ItemsView': _instancecheck_itemsview,
'typing.Dict': _instancecheck_mapping,
'typing.DefaultDict': _instancecheck_mapping,
'typing.Counter': _instancecheck_mapping,
'typing.ChainMap': _instancecheck_mapping,
# other
'typing.Tuple': _instancecheck_tuple,
}.items():
try:
cls = eval(class_path)
except AttributeError:
continue
_ORIGIN_TYPE_CHECKERS[cls] = check_func
def _instancecheck_callable(value, type_):
if not callable(value):
return False
if is_base_generic(type_):
return True
param_types, ret_type = get_subtypes(type_)
sig = inspect.signature(value)
missing_annotations = []
if param_types is not ...:
if len(param_types) != len(sig.parameters):
return False
# FIXME: add support for TypeVars
# if any of the existing annotations don't match the type, we'll return False.
# Then, if any annotations are missing, we'll throw an exception.
for param, expected_type in zip(sig.parameters.values(), param_types):
param_type = param.annotation
if param_type is inspect.Parameter.empty:
missing_annotations.append(param)
continue
if not is_subtype(param_type, expected_type):
return False
if sig.return_annotation is inspect.Signature.empty:
missing_annotations.append('return')
else:
if not is_subtype(sig.return_annotation, ret_type):
return False
if missing_annotations:
raise ValueError("Missing annotations: {}".format(missing_annotations))
return True
def _instancecheck_union(value, type_):
types = get_subtypes(type_)
return any(is_instance(value, typ) for typ in types)
def _instancecheck_type(value, type_):
# if it's not a class, return False
if not isinstance(value, type):
return False
if is_base_generic(type_):
return True
type_args = get_subtypes(type_)
if len(type_args) != 1:
raise TypeError("Type must have exactly 1 type argument; found {}".format(type_args))
return is_subtype(value, type_args[0])
_SPECIAL_INSTANCE_CHECKERS = {
'Union': _instancecheck_union,
'Callable': _instancecheck_callable,
'Type': _instancecheck_type,
'Any': lambda v, t: True,
}
def is_instance(obj, type_):
if type_.__module__ == 'typing':
if is_qualified_generic(type_):
base_generic = get_base_generic(type_)
else:
base_generic = type_
name = _get_name(base_generic)
try:
validator = _SPECIAL_INSTANCE_CHECKERS[name]
except KeyError:
pass
else:
return validator(obj, type_)
if is_base_generic(type_):
python_type = _get_python_type(type_)
return isinstance(obj, python_type)
if is_qualified_generic(type_):
python_type = _get_python_type(type_)
if not isinstance(obj, python_type):
return False
base = get_base_generic(type_)
try:
validator = _ORIGIN_TYPE_CHECKERS[base]
except KeyError:
raise NotImplementedError("Cannot perform isinstance check for type {}".format(type_))
type_args = get_subtypes(type_)
return validator(obj, type_args)
return isinstance(obj, type_)
def is_subtype(sub_type, super_type):
if not is_generic(sub_type):
python_super = python_type(super_type)
return issubclass(sub_type, python_super)
# at this point we know `sub_type` is a generic
python_sub = python_type(sub_type)
python_super = python_type(super_type)
if not issubclass(python_sub, python_super):
return False
# at this point we know that `sub_type`'s base type is a subtype of `super_type`'s base type.
# If `super_type` isn't qualified, then there's nothing more to do.
if not is_generic(super_type) or is_base_generic(super_type):
return True
# at this point we know that `super_type` is a qualified generic... so if `sub_type` isn't
# qualified, it can't be a subtype.
if is_base_generic(sub_type):
return False
# at this point we know that both types are qualified generics, so we just have to
# compare their sub-types.
sub_args = get_subtypes(sub_type)
super_args = get_subtypes(super_type)
return all(is_subtype(sub_arg, super_arg) for sub_arg, super_arg in zip(sub_args, super_args))
def python_type(annotation):
"""
Given a type annotation or a class as input, returns the corresponding python class.
Examples:
::
>>> python_type(typing.Dict)
<class 'dict'>
>>> python_type(typing.List[int])
<class 'list'>
>>> python_type(int)
<class 'int'>
"""
try:
mro = annotation.mro()
except AttributeError:
# if it doesn't have an mro method, it must be a weird typing object
return _get_python_type(annotation)
if Type in mro:
return annotation.python_type
elif annotation.__module__ == 'typing':
return _get_python_type(annotation)
else:
return annotation
演示:
>>> is_instance([{'x': 3}], List[Dict[str, int]])
True
>>> is_instance([{'x': 3}, {'y': 7.5}], List[Dict[str, int]])
False
(据我所知,它支持所有python版本,甚至包括使用typing
module backport <3.5的版本。)
答案 4 :(得分:0)
您将必须手动检查嵌套的类型结构-类型提示不被强制执行。
最好使用 ABC(抽象元类)进行这种检查,以便用户可以提供其派生类来支持与默认dict /列表相同的访问:
import collections.abc
def isCorrectType(data):
if isinstance(data, collections.abc.Collection):
for d in data:
if isinstance(d,collections.abc.MutableMapping):
for key in d:
if isinstance(key,str) and isinstance(d[key],int):
pass
else:
return False
else:
return False
else:
return False
return True
输出:
print ( isCorrectType( [ {"a":2} ] )) # True
print ( isCorrectType( [ {2:2} ] )) # False
print ( isCorrectType( [ {"a":"a"} ] )) # False
print ( isCorrectType( [ {"a":2},1 ] )) # False
Doku:
相关:
另一种方法是遵循"Ask forgiveness not permission" - explain范式,以所需的形式简单地使用您的数据,如果数据不符合try:/except:
,则const Sequelize = require('sequelize');
const sequelize = require('../util/database');
const User = sequelize.define('user', {
id: {
type: Sequelize.INTEGER,
autoIncrement: true,
allowNull: false,
primaryKey: true
},
name: {
type: Sequelize.TEXT,
allowNull: false
},
surname: {
type: Sequelize.TEXT,
allowNull: false
}
});
module.exports = User;
你自找的。这更适合What is duck typing?-并允许(类似于ABC检查)消费者在仍然可以使用的情况下为您提供从list / dict派生的类...
答案 5 :(得分:0)
如果您只想进行json解析,则只需使用pydantic。
但是,我遇到了要检查python对象类型的问题,因此,我创建了一个比其他答案更简单的解决方案,该解决方案至少处理了带有嵌套列表和字典的复杂类型。
我通过https://gist.github.com/ramraj07/f537bf9f80b4133c65dd76c958d4c461
的这种方法创建了要点此方法的一些示例用法包括:
from typing import List, Dict, Union, Type, Optional
check_type('a', str)
check_type({'a': 1}, Dict[str, int])
check_type([{'a': [1.0]}, 'ten'], List[Union[Dict[str, List[float]], str]])
check_type(None, Optional[str])
check_type('abc', Optional[str])
以下是供参考的代码:
import typing
def check_type(obj: typing.Any, type_to_check: typing.Any, _external=True) -> None:
try:
if not hasattr(type_to_check, "_name"):
# base-case
if not isinstance(obj, type_to_check):
raise TypeError
return
# type_to_check is from typing library
type_name = type_to_check._name
if type_to_check is typing.Any:
pass
elif type_name in ("List", "Tuple"):
if (type_name == "List" and not isinstance(obj, list)) or (
type_name == "Tuple" and not isinstance(obj, tuple)
):
raise TypeError
element_type = type_to_check.__args__[0]
for element in obj:
check_type(element, element_type, _external=False)
elif type_name == "Dict":
if not isinstance(obj, dict):
raise TypeError
if len(type_to_check.__args__) != 2:
raise NotImplementedError(
"check_type can only accept Dict typing with separate annotations for key and values"
)
key_type, value_type = type_to_check.__args__
for key, value in obj.items():
check_type(key, key_type, _external=False)
check_type(value, value_type, _external=False)
elif type_name is None and type_to_check.__origin__ is typing.Union:
type_options = type_to_check.__args__
no_option_matched = True
for type_option in type_options:
try:
check_type(obj, type_option, _external=False)
no_option_matched = False
break
except TypeError:
pass
if no_option_matched:
raise TypeError
else:
raise NotImplementedError(
f"check_type method currently does not support checking typing of form '{type_name}'"
)
except TypeError:
if _external:
raise TypeError(
f"Object {repr(obj)} is of type {_construct_type_description(obj)} "
f"when {type_to_check} was expected"
)
raise TypeError()
def _construct_type_description(obj) -> str:
def get_types_in_iterable(iterable) -> str:
types = {_construct_type_description(element) for element in iterable}
return types.pop() if len(types) == 1 else f"Union[{','.join(types)}]"
if isinstance(obj, list):
return f"List[{get_types_in_iterable(obj)}]"
elif isinstance(obj, dict):
key_types = get_types_in_iterable(obj.keys())
val_types = get_types_in_iterable(obj.values())
return f"Dict[{key_types}, {val_types}]"
else:
return type(obj).__name__