如何检查值是否与python中的类型匹配?

时间:2019-04-03 20:21:31

标签: python typing

假设我有一个python函数,其单个参数为非平凡类型:

from typing import List, Dict
ArgType = List[Dict[str, int]]  # this could be any non-trivial type
def myfun(a: ArgType) -> None:
    ...

...然后我有一个从JSON源解压缩的数据结构:

import json
data = json.loads(...)

我的问题是:如何在运行时检查 data是否具有正确的类型以用作myfun()的参数,然后再将其用作{ {1}}?

myfun()

6 个答案:

答案 0 :(得分:3)

没有内置函数是很尴尬的,但是 typeguard 带有一个方便的 configure({ adapter: new Adapter() }); const mockStore = configureMockStore(); const store = mockStore(); describe("test", () => { it("test", () => { const wrapper = mount( <Provider store={store}> <RecoilRoot> <Dashboard /> </RecoilRoot> </Provider> ); }); }); 函数:

<RecoilRoot>

更多信息请参见:https://typeguard.readthedocs.io/en/latest/api.html#typeguard.check_type

答案 1 :(得分:1)

首先,即使我认为您已经意识到,但出于完整性考虑,类型库包含用于类型提示的类型。这些类型提示由IDE用来检查您的代码是否合理,并作为文档说明开发人员期望的类型。

要检查变量是否是某种类型的东西,我们必须使用isinstance函数。令人惊讶的是,我们可以使用类型库函数的直接类型,例如。

from typing import List

value = []
isinstance(value, List)

但是,对于List[Dict[str, int]]之类的嵌套结构,我们不能直接使用它,因为您很有趣地得到TypeError。您要做的是:

  1. 检查初始值是否为列表
  2. 检查列表中的每个项目是否为dict
  3. 类型
  4. 检查每个dict的每个键是否实际上是一个字符串,以及每个值是否实际上是一个int

不幸的是,严格检查python有点麻烦。但是,请注意python使用了鸭子输入:如果它像鸭子一样,并且表现得像鸭子,那么它绝对是鸭子。

答案 2 :(得分:1)

处理此问题的常用方法是利用以下事实:如果您传递给myfun的任何对象均不具有所需的功能,则会引发相应的异常(通常为TypeError或{ {1}})。因此,您将执行以下操作:

AttributeError

您在问题中指出,如果传递的对象没有适当的结构,则Python将为您提供try: myfun(data) except (TypeError, AttributeError) as err: # Fallback for invalid types here. 。关键问题是如何处理这种情况。如果合适,也可以将TypeError块移到try / except中。在Python中键入内容时,通常需要依靠duck typing:如果对象具有所需的功能,则只要它能满足目的,您就不必在意它是什么类型。

请考虑以下示例。我们只是将数据传递到函数中,然后免费获得myfun(然后我们可以除外);无需手动类型检查:

AttributeError

如果您担心产生的错误的有用性,您仍然可以排除然后重新引发自定义异常(甚至更改异常的消息):

>>> def myfun(data):
...     for x in data:
...             print(x.items())
... 
>>> data = json.loads('[[["a", 1], ["b", 2]], [["c", 3], ["d", 4]]]')
>>> myfun(data)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 3, in myfun
AttributeError: 'list' object has no attribute 'items'

使用第三方代码时,应始终检查文档中是否会引发异常。例如,numpy.inner报告说在某些情况下它将引发try: myfun(data) except (TypeError, AttributeError) as err: raise TypeError('Data has incorrect structure') from err try: myfun(data) except (TypeError, AttributeError) as err: err.args = ('Data has incorrect structure',) raise 。当使用该函数时,我们不需要自己执行任何检查,而是依赖于这样的事实:如果需要,它将引发错误。当使用第三方代码时,不清楚在某些极端情况下,i.m.o。只需硬编码相应的类型检查器(请参见下文),而不是使用适用于任何类型的通用解决方案,就更加容易和清楚。无论如何,这些情况应该很少见,留下相应的评论会让您的开发人员知道这种情况。

ValueError库用于类型提示,因此它不会在运行时检查类型。当然,您可以手动执行此操作,但这很麻烦:

typing

将此与适当的注释一起仍然是可以接受的解决方案,并且在需要类似数据结构的地方可以重用。意图很明确,代码很容易验证。

答案 3 :(得分:1)

验证类型注释是一项艰巨的任务。 Python不会自动执行此操作,并且编写自己的验证器很困难,因为typing模块没有提供很多有用的接口。 (实际上,typing模块的内部自从python 3.5引入以来已经发生了很大变化,说实话,这是一场噩梦。)

这是一个类型验证器函数,该函数取自我的一个个人项目(代码警告墙):

import inspect
import typing

__all__ = ['is_instance', 'is_subtype', 'python_type', 'is_generic', 'is_base_generic', 'is_qualified_generic']


if hasattr(typing, '_GenericAlias'):
    # python 3.7
    def _is_generic(cls):
        if isinstance(cls, typing._GenericAlias):
            return True

        if isinstance(cls, typing._SpecialForm):
            return cls not in {typing.Any}

        return False


    def _is_base_generic(cls):
        if isinstance(cls, typing._GenericAlias):
            if cls.__origin__ in {typing.Generic, typing._Protocol}:
                return False

            if isinstance(cls, typing._VariadicGenericAlias):
                return True

            return len(cls.__parameters__) > 0

        if isinstance(cls, typing._SpecialForm):
            return cls._name in {'ClassVar', 'Union', 'Optional'}

        return False


    def _get_base_generic(cls):
        # subclasses of Generic will have their _name set to None, but
        # their __origin__ will point to the base generic
        if cls._name is None:
            return cls.__origin__
        else:
            return getattr(typing, cls._name)


    def _get_python_type(cls):
        """
        Like `python_type`, but only works with `typing` classes.
        """
        return cls.__origin__


    def _get_name(cls):
        return cls._name
else:
    # python <3.7
    if hasattr(typing, '_Union'):
        # python 3.6
        def _is_generic(cls):
            if isinstance(cls, (typing.GenericMeta, typing._Union, typing._Optional, typing._ClassVar)):
                return True

            return False


        def _is_base_generic(cls):
            if isinstance(cls, (typing.GenericMeta, typing._Union)):
                return cls.__args__ in {None, ()}

            if isinstance(cls, typing._Optional):
                return True

            return False
    else:
        # python 3.5
        def _is_generic(cls):
            if isinstance(cls, (typing.GenericMeta, typing.UnionMeta, typing.OptionalMeta, typing.CallableMeta, typing.TupleMeta)):
                return True

            return False


        def _is_base_generic(cls):
            if isinstance(cls, typing.GenericMeta):
                return all(isinstance(arg, typing.TypeVar) for arg in cls.__parameters__)

            if isinstance(cls, typing.UnionMeta):
                return cls.__union_params__ is None

            if isinstance(cls, typing.TupleMeta):
                return cls.__tuple_params__ is None

            if isinstance(cls, typing.CallableMeta):
                return cls.__args__ is None

            if isinstance(cls, typing.OptionalMeta):
                return True

            return False


    def _get_base_generic(cls):
        try:
            return cls.__origin__
        except AttributeError:
            pass

        name = type(cls).__name__
        if not name.endswith('Meta'):
            raise NotImplementedError("Cannot determine base of {}".format(cls))

        name = name[:-4]
        return getattr(typing, name)


    def _get_python_type(cls):
        """
        Like `python_type`, but only works with `typing` classes.
        """
        # Many classes actually reference their corresponding abstract base class from the abc module
        # instead of their builtin variant (i.e. typing.List references MutableSequence instead of list).
        # We're interested in the builtin class (if any), so we'll traverse the MRO and look for it there.
        for typ in cls.mro():
            if typ.__module__ == 'builtins' and typ is not object:
                return typ

        try:
            return cls.__extra__
        except AttributeError:
            pass

        if is_qualified_generic(cls):
            cls = get_base_generic(cls)

        if cls is typing.Tuple:
            return tuple

        raise NotImplementedError("Cannot determine python type of {}".format(cls))


    def _get_name(cls):
        try:
            return cls.__name__
        except AttributeError:
            return type(cls).__name__[1:]


if hasattr(typing.List, '__args__'):
    # python 3.6+
    def _get_subtypes(cls):
        subtypes = cls.__args__

        if get_base_generic(cls) is typing.Callable:
            if len(subtypes) != 2 or subtypes[0] is not ...:
                subtypes = (subtypes[:-1], subtypes[-1])

        return subtypes
else:
    # python 3.5
    def _get_subtypes(cls):
        if isinstance(cls, typing.CallableMeta):
            if cls.__args__ is None:
                return ()

            return cls.__args__, cls.__result__

        for name in ['__parameters__', '__union_params__', '__tuple_params__']:
            try:
                subtypes = getattr(cls, name)
                break
            except AttributeError:
                pass
        else:
            raise NotImplementedError("Cannot extract subtypes from {}".format(cls))

        subtypes = [typ for typ in subtypes if not isinstance(typ, typing.TypeVar)]
        return subtypes


def is_generic(cls):
    """
    Detects any kind of generic, for example `List` or `List[int]`. This includes "special" types like
    Union and Tuple - anything that's subscriptable, basically.
    """
    return _is_generic(cls)


def is_base_generic(cls):
    """
    Detects generic base classes, for example `List` (but not `List[int]`)
    """
    return _is_base_generic(cls)


def is_qualified_generic(cls):
    """
    Detects generics with arguments, for example `List[int]` (but not `List`)
    """
    return is_generic(cls) and not is_base_generic(cls)


def get_base_generic(cls):
    if not is_qualified_generic(cls):
        raise TypeError('{} is not a qualified Generic and thus has no base'.format(cls))

    return _get_base_generic(cls)


def get_subtypes(cls):
    return _get_subtypes(cls)


def _instancecheck_iterable(iterable, type_args):
    if len(type_args) != 1:
        raise TypeError("Generic iterables must have exactly 1 type argument; found {}".format(type_args))

    type_ = type_args[0]
    return all(is_instance(val, type_) for val in iterable)


def _instancecheck_mapping(mapping, type_args):
    return _instancecheck_itemsview(mapping.items(), type_args)


def _instancecheck_itemsview(itemsview, type_args):
    if len(type_args) != 2:
        raise TypeError("Generic mappings must have exactly 2 type arguments; found {}".format(type_args))

    key_type, value_type = type_args
    return all(is_instance(key, key_type) and is_instance(val, value_type) for key, val in itemsview)


def _instancecheck_tuple(tup, type_args):
    if len(tup) != len(type_args):
        return False

    return all(is_instance(val, type_) for val, type_ in zip(tup, type_args))


_ORIGIN_TYPE_CHECKERS = {}
for class_path, check_func in {
                        # iterables
                        'typing.Container': _instancecheck_iterable,
                        'typing.Collection': _instancecheck_iterable,
                        'typing.AbstractSet': _instancecheck_iterable,
                        'typing.MutableSet': _instancecheck_iterable,
                        'typing.Sequence': _instancecheck_iterable,
                        'typing.MutableSequence': _instancecheck_iterable,
                        'typing.ByteString': _instancecheck_iterable,
                        'typing.Deque': _instancecheck_iterable,
                        'typing.List': _instancecheck_iterable,
                        'typing.Set': _instancecheck_iterable,
                        'typing.FrozenSet': _instancecheck_iterable,
                        'typing.KeysView': _instancecheck_iterable,
                        'typing.ValuesView': _instancecheck_iterable,
                        'typing.AsyncIterable': _instancecheck_iterable,

                        # mappings
                        'typing.Mapping': _instancecheck_mapping,
                        'typing.MutableMapping': _instancecheck_mapping,
                        'typing.MappingView': _instancecheck_mapping,
                        'typing.ItemsView': _instancecheck_itemsview,
                        'typing.Dict': _instancecheck_mapping,
                        'typing.DefaultDict': _instancecheck_mapping,
                        'typing.Counter': _instancecheck_mapping,
                        'typing.ChainMap': _instancecheck_mapping,

                        # other
                        'typing.Tuple': _instancecheck_tuple,
                    }.items():
    try:
        cls = eval(class_path)
    except AttributeError:
        continue

    _ORIGIN_TYPE_CHECKERS[cls] = check_func


def _instancecheck_callable(value, type_):
    if not callable(value):
        return False

    if is_base_generic(type_):
        return True

    param_types, ret_type = get_subtypes(type_)
    sig = inspect.signature(value)

    missing_annotations = []

    if param_types is not ...:
        if len(param_types) != len(sig.parameters):
            return False

        # FIXME: add support for TypeVars

        # if any of the existing annotations don't match the type, we'll return False.
        # Then, if any annotations are missing, we'll throw an exception.
        for param, expected_type in zip(sig.parameters.values(), param_types):
            param_type = param.annotation
            if param_type is inspect.Parameter.empty:
                missing_annotations.append(param)
                continue

            if not is_subtype(param_type, expected_type):
                return False

    if sig.return_annotation is inspect.Signature.empty:
        missing_annotations.append('return')
    else:
        if not is_subtype(sig.return_annotation, ret_type):
            return False

    if missing_annotations:
        raise ValueError("Missing annotations: {}".format(missing_annotations))

    return True


def _instancecheck_union(value, type_):
    types = get_subtypes(type_)
    return any(is_instance(value, typ) for typ in types)


def _instancecheck_type(value, type_):
    # if it's not a class, return False
    if not isinstance(value, type):
        return False

    if is_base_generic(type_):
        return True

    type_args = get_subtypes(type_)
    if len(type_args) != 1:
        raise TypeError("Type must have exactly 1 type argument; found {}".format(type_args))

    return is_subtype(value, type_args[0])


_SPECIAL_INSTANCE_CHECKERS = {
    'Union': _instancecheck_union,
    'Callable': _instancecheck_callable,
    'Type': _instancecheck_type,
    'Any': lambda v, t: True,
}


def is_instance(obj, type_):
    if type_.__module__ == 'typing':
        if is_qualified_generic(type_):
            base_generic = get_base_generic(type_)
        else:
            base_generic = type_
        name = _get_name(base_generic)

        try:
            validator = _SPECIAL_INSTANCE_CHECKERS[name]
        except KeyError:
            pass
        else:
            return validator(obj, type_)

    if is_base_generic(type_):
        python_type = _get_python_type(type_)
        return isinstance(obj, python_type)

    if is_qualified_generic(type_):
        python_type = _get_python_type(type_)
        if not isinstance(obj, python_type):
            return False

        base = get_base_generic(type_)
        try:
            validator = _ORIGIN_TYPE_CHECKERS[base]
        except KeyError:
            raise NotImplementedError("Cannot perform isinstance check for type {}".format(type_))

        type_args = get_subtypes(type_)
        return validator(obj, type_args)

    return isinstance(obj, type_)


def is_subtype(sub_type, super_type):
    if not is_generic(sub_type):
        python_super = python_type(super_type)
        return issubclass(sub_type, python_super)

    # at this point we know `sub_type` is a generic
    python_sub = python_type(sub_type)
    python_super = python_type(super_type)
    if not issubclass(python_sub, python_super):
        return False

    # at this point we know that `sub_type`'s base type is a subtype of `super_type`'s base type.
    # If `super_type` isn't qualified, then there's nothing more to do.
    if not is_generic(super_type) or is_base_generic(super_type):
        return True

    # at this point we know that `super_type` is a qualified generic... so if `sub_type` isn't
    # qualified, it can't be a subtype.
    if is_base_generic(sub_type):
        return False

    # at this point we know that both types are qualified generics, so we just have to
    # compare their sub-types.
    sub_args = get_subtypes(sub_type)
    super_args = get_subtypes(super_type)
    return all(is_subtype(sub_arg, super_arg) for sub_arg, super_arg in zip(sub_args, super_args))


def python_type(annotation):
    """
    Given a type annotation or a class as input, returns the corresponding python class.

    Examples:

    ::
        >>> python_type(typing.Dict)
        <class 'dict'>
        >>> python_type(typing.List[int])
        <class 'list'>
        >>> python_type(int)
        <class 'int'>
    """
    try:
        mro = annotation.mro()
    except AttributeError:
        # if it doesn't have an mro method, it must be a weird typing object
        return _get_python_type(annotation)

    if Type in mro:
        return annotation.python_type
    elif annotation.__module__ == 'typing':
        return _get_python_type(annotation)
    else:
        return annotation

演示:

>>> is_instance([{'x': 3}], List[Dict[str, int]])
True
>>> is_instance([{'x': 3}, {'y': 7.5}], List[Dict[str, int]])
False

(据我所知,它支持所有python版本,甚至包括使用typing module backport <3.5的版本。)

答案 4 :(得分:0)

您将必须手动检查嵌套的类型结构-类型提示不被强制执行。

最好使用 ABC(抽象元类)进行这种检查,以便用户可以提供其派生类来支持与默认dict /列表相同的访问:

import collections.abc 

def isCorrectType(data):
    if isinstance(data, collections.abc.Collection): 
        for d in data:
            if isinstance(d,collections.abc.MutableMapping): 
                for key in d:
                    if isinstance(key,str) and isinstance(d[key],int):
                        pass
                    else:
                        return False
            else: 
                return False
    else:
        return False
    return True

输出:

print ( isCorrectType( [ {"a":2} ] ))       # True
print ( isCorrectType( [ {2:2} ] ))         # False   
print ( isCorrectType( [ {"a":"a"} ] ))     # False   
print ( isCorrectType( [ {"a":2},1 ] ))     # False   

Doku:

相关:


另一种方法是遵循"Ask forgiveness not permission" - explain范式,以所需的形式简单地使用您的数据,如果数据不符合try:/except:,则const Sequelize = require('sequelize'); const sequelize = require('../util/database'); const User = sequelize.define('user', { id: { type: Sequelize.INTEGER, autoIncrement: true, allowNull: false, primaryKey: true }, name: { type: Sequelize.TEXT, allowNull: false }, surname: { type: Sequelize.TEXT, allowNull: false } }); module.exports = User; 你自找的。这更适合What is duck typing?-并允许(类似于ABC检查)消费者在仍然可以使用的情况下为您提供从list / dict派生的类...

答案 5 :(得分:0)

如果您只想进行json解析,则只需使用pydantic

但是,我遇到了要检查python对象类型的问题,因此,我创建了一个比其他答案更简单的解决方案,该解决方案至少处理了带有嵌套列表和字典的复杂类型。

我通过https://gist.github.com/ramraj07/f537bf9f80b4133c65dd76c958d4c461

的这种方法创建了要点

此方法的一些示例用法包括:

from typing import List, Dict, Union, Type, Optional

check_type('a', str)
check_type({'a': 1}, Dict[str, int])
check_type([{'a': [1.0]}, 'ten'], List[Union[Dict[str, List[float]], str]])
check_type(None, Optional[str])
check_type('abc', Optional[str])

以下是供参考的代码:

import typing

def check_type(obj: typing.Any, type_to_check: typing.Any, _external=True) -> None:

    try:
        if not hasattr(type_to_check, "_name"):
            # base-case
            if not isinstance(obj, type_to_check):
                raise TypeError
            return
        # type_to_check is from typing library
        type_name = type_to_check._name

        if type_to_check is typing.Any:
            pass
        elif type_name in ("List", "Tuple"):
            if (type_name == "List" and not isinstance(obj, list)) or (
                type_name == "Tuple" and not isinstance(obj, tuple)
            ):
                raise TypeError

            element_type = type_to_check.__args__[0]
            for element in obj:
                check_type(element, element_type, _external=False)
        elif type_name == "Dict":
            if not isinstance(obj, dict):
                raise TypeError
            if len(type_to_check.__args__) != 2:
                raise NotImplementedError(
                    "check_type can only accept Dict typing with separate annotations for key and values"
                )
            key_type, value_type = type_to_check.__args__
            for key, value in obj.items():
                check_type(key, key_type, _external=False)
                check_type(value, value_type, _external=False)
        elif type_name is None and type_to_check.__origin__ is typing.Union:
            type_options = type_to_check.__args__
            no_option_matched = True
            for type_option in type_options:
                try:
                    check_type(obj, type_option, _external=False)
                    no_option_matched = False
                    break
                except TypeError:
                    pass
            if no_option_matched:
                raise TypeError
        else:
            raise NotImplementedError(
                f"check_type method currently does not support checking typing of form '{type_name}'"
            )

    except TypeError:
        if _external:
            raise TypeError(
                f"Object {repr(obj)} is of type {_construct_type_description(obj)} "
                f"when {type_to_check} was expected"
            )
        raise TypeError()


def _construct_type_description(obj) -> str:
    def get_types_in_iterable(iterable) -> str:
        types = {_construct_type_description(element) for element in iterable}
        return types.pop() if len(types) == 1 else f"Union[{','.join(types)}]"

    if isinstance(obj, list):
        return f"List[{get_types_in_iterable(obj)}]"
    elif isinstance(obj, dict):
        key_types = get_types_in_iterable(obj.keys())
        val_types = get_types_in_iterable(obj.values())
        return f"Dict[{key_types}, {val_types}]"
    else:
        return type(obj).__name__