请帮助您在keras模型中定义适当的if (confirm('are you really want to do what you are going to do?')) {
console.log('ok')
}
else {
console.log('no')
}
输入形状。也许我必须先重塑数据。我的数据集的尺寸如下所示:
Dense
我想这样定义顺序keras模型
``
Data shapes are X_train: (2858, 2037) y_train: (2858, 1) X_test: (715, 2037) y_test: (715, 1)
Number of features (input shape) is 2037
``
模型摘要:
``
batch_size = 128
num_classes = 2
epochs = 20
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(X_input_shape,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.summary()
model.compile(loss='binary_crossentropy',
optimizer=RMSprop(),
from_logits=True,
metrics=['accuracy'])
``
当我尝试适应它时...
``
Layer (type) Output Shape Param #
=================================================================
dense_20 (Dense) (None, 512) 1043456
_________________________________________________________________
dropout_12 (Dropout) (None, 512) 0
_________________________________________________________________
dense_21 (Dense) (None, 512) 262656
=================================================================
Total params: 1,306,112
Trainable params: 1,306,112
Non-trainable params: 0
`` 我遇到错误:
``
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(X_test, y_test))
``
答案 0 :(得分:0)
修改
model.add(Dense(512, activation='relu'))
到
model.add(Dense(1, activation='relu'))
输出形状的大小为1,与y_train.shape [1]相同。