我有一行代码可以有效地将一个numpy数组的形状从400x8x8数组重塑为160x160数组,我需要颠倒这一过程,但无法弄清这一行的相反方向。
我已经可以执行此过程,但是它效率很低,并且需要嵌套循环,出于性能考虑,我希望避免嵌套循环。
这是我目前必须逆转此过程的代码(160x160> 400x8x8):
previousRow = 0
for rowBlock in range(noBlocksOn1Axis):
previousRow = rowBlock * blockSize
previousColumn = 0
for columnBlock in range(noBlocksOn1Axis):
previousColumn = columnBlock * blockSize
block =
arrayY[previousRow:previousRow+blockSize,
previousColumn:previousColumn + blockSize]
blocksList.append(block)
这是重新设计400x8x8> 160x160的代码行:
xy = np.zeros((160,160), dtype = np.uint8)
xy = np.vstack(np.hstack(overDone[20*i:20+20*i]) for i in
range(overDone.shape[0]//20))
那么关于如何反向执行这一行代码的任何想法?
谢谢:D
答案 0 :(得分:2)
重塑,交换轴(或转置轴)并重塑以使overDone
返回-
xy.reshape(20,8,20,8).swapaxes(1,2).reshape(400,8,8)
有关intuition behind nd-to-nd array transformation
的更多信息。
将其通用以处理通用形状-
m,n = xy.shape
M,N = 20,20 # block size used to get xy
overDone_ = xy.reshape(M,m//M,N,n//N).swapaxes(1,2).reshape(-1,m//M,n//N)
样品运行-
# Original input
In [21]: overDone = np.random.rand(400,8,8)
# Perform forward step to get xy
In [22]: xy = np.vstack(np.hstack(overDone[20*i:20+20*i]) for i in range(overDone.shape[0]//20))
# Use proposed approach to get back overDone
In [23]: out = xy.reshape(20,8,20,8).swapaxes(1,2).reshape(400,8,8)
# Verify output to be same as overDone
In [42]: np.array_equal(out,overDone)
Out[42]: True
奖金:
我们可以使用相同的向量化reshape+permute-axes
步骤为前进过程创建xy
-
xy = overDone.reshape(20,20,8,8).swapaxes(1,2).reshape(160,160)
答案 1 :(得分:0)
numpy.reshape
怎么了?
<UpdateWaypointDialog
open={updateWaypointDialogOpen}
onClose={()=> this.handleUpdateWaypointDialogClose(waypoint)}
updateWaypoint={this.updateWaypoint}
index={i}
waypoint={waypoint} />