需要测试的功能(意味着我看不到代码,我只能导入它们):
文件async_data.py
import asyncio
import socket
import aiohttp
async def get_json(client, uid):
json_url = 'https://jsonplaceholder.typicode.com/todos/{uid}'.format(uid=uid)
resp = await client.request('GET', json_url)
data = await resp.json()
return data
async def main_async(range_max):
conn = aiohttp.TCPConnector(family=socket.AF_INET, verify_ssl=True)
async with aiohttp.ClientSession(trust_env=True, connector=conn) as client:
tasks = [get_json(client, x) for x in range(range_max)]
data = await asyncio.gather(*tasks, return_exceptions=True)
return data
秒(在同步模式或使用池中执行同一任务)sync_data.py
import json
import urllib.request
from multiprocessing import Pool
def get_json_url(uid):
json_url = 'https://jsonplaceholder.typicode.com/todos/{uid}'.format(uid=uid)
jsondata = {}
try:
with urllib.request.urlopen(json_url) as url:
jsondata = json.loads(url.read().decode())
except urllib.error.HTTPError:
pass
return jsondata
def main_sync(range_max):
return [get_json_url(uid) for uid in range(range_max)]
def main_pool(range_max):
with Pool() as pool:
result = pool.map(get_json_url, range(range_max))
return result
主块,这里的函数main_async,main_sync,main_pool看起来像黑框,运行测试:
import time
import asyncio
from async_data import main_async
from sync_data import main_sync, main_pool
def main():
total_cnt = 200
# async block
async_start = time.clock()
loop = asyncio.get_event_loop()
try:
async_data = loop.run_until_complete(main_async(total_cnt))
finally:
loop.close()
async_time = time.clock() - async_start
# pool block
pool_start = time.clock()
pool_data = main_pool(total_cnt)
pool_time = time.clock() - pool_start
# sync block
sync_start = time.clock()
sync_data = main_sync(total_cnt)
sync_time = time.clock() - sync_start
# assert data
sorted_async = sorted([x.get('id', -1) for x in async_data])
sorted_pool = sorted([x.get('id', -1) for x in pool_data])
sorted_sync = sorted([x.get('id', -1) for x in sync_data])
assert sorted_async == sorted_pool
assert sorted_async == sorted_sync
assert sync_time > async_time
assert sync_time > pool_time
# AND here i want to be ensure that the result was given by async not pool
if __name__ == '__main__':
main()
测试数据是通过async
还是sync
方法接收的一种简单方法是检查执行时间。但是,您可以通过哪种方式测试代码是使用pool
还是async
?
答案 0 :(得分:2)
您可以尝试一些模拟测试:
import multiprocessing.pool
from unittest.mock import patch
...
with patch(
'multiprocessing.pool.ApplyResult.get',
autospec=True,
wraps=multiprocessing.pool.ApplyResult.get
) as patched:
async_start = time.clock()
loop = asyncio.get_event_loop()
try:
async_data = loop.run_until_complete(main_async(total_cnt))
finally:
loop.close()
async_time = time.clock() - async_start
patched.assert_not_called()
...
pool_start = time.clock()
pool_data = main_pool(total_cnt)
pool_time = time.clock() - pool_start
patched.assert_called()
pool.ApplyResult.get
是在从pool.map返回值(以及从apply,join返回值)之前调用的方法,因此,如果您不确定第二个测试模块使用的多重处理中的确切方法,您可以坚持使用pool.ApplyResult.get)。
然后unittest.mock.patch
对象:它是测试中使用的工具,其目的是替代标准库或第三方库中的某些方法或对象。通常,它可以防止调用打补丁的方法,而只是返回一些模仿原始方法的工作的预定义值。
但是您可以通过wraps
参数以其他方式使用。如果将原始方法传递给此参数,则会在处理过程中调用原始方法。尽管如此,pool.ApplyResult.get
仍将包含修补的对象,而不是原始的get
方法。但是,当修补对象处理该调用时,将调用原始的get
。因此,您既可以使用该方法的结果,也可以使用unittest库提供的一些额外统计信息,例如assert_called
。