我正在创建一个计数器列,仅在(i-1)的值与i的值不同时才增加。
以下是示例数据:
user_id sc_id
1 100
1 100
1 101
1 100
2 100
2 105
3 105
3 105
下面是我的代码:
df['subcat_counter'] = 1
for i in range(1,len(df)):
if df.sc_id[i-1]==df.sc_id[i] and df['user_id'][i-1]==df['user_id'][i]:
df.at[i,'subcat_counter']=df.subcat_counter[i-1]
else:
df.at[i,'subcat_counter']=df.subcat_counter[i-1]+1
以下是必需的输出:
user_id sc_id subcat_counter
1 100 1
1 100 1
1 101 2
1 . 100 3
2 100 4
2 105 5
3 105 6
3 105 6
错误:
KeyError:0
答案 0 :(得分:4)
df1 = df[['user_id','sc_id']].ne(df[['user_id','sc_id']].shift()).cumsum().add_prefix('g_')
df['subcat_counter'] = df.join(df1).groupby(['g_user_id','g_sc_id'], sort=False).ngroup() + 1
print (df)
user_id sc_id subcat_counter
0 1 100 1
1 1 100 1
2 1 101 2
3 1 100 3
4 2 100 4
5 2 105 5
6 3 105 6
7 3 105 6
另一种解决方案:
s = df['user_id'].astype(str) + '_' + df['sc_id'].astype(str)
df['subcat_counter'] = s.ne(s.shift()).cumsum()
print (df)
user_id sc_id subcat_counter
0 1 100 1
1 1 100 1
2 1 101 2
3 1 100 3
4 2 100 4
5 2 105 5
6 3 105 6
7 3 105 6
答案 1 :(得分:1)
如果您关注的只是上一行,则可以使用.shift()
获取其值,然后进行相应的比较。在这里,我们检查user_id
和sc_id
是否与上一行匹配,并将其取反以找到我们希望值改变的点。然后,我们将其转换为int
,以将True设为1,将False设为0(这不是严格必要的,但有助于解释发生了什么),然后进行累加和。
prev_row = df.shift(1)
df['subcat_counter'] = (
~(df['user_id'].eq(prev_row['user_id']) & df['sc_id'].eq(prev_row['sc_id']))
).astype(int).cumsum()