答案 0 :(得分:1)
如果您可以在the page you linked中找到自己喜欢的不同颜色图,则可以使用ListedColormap
轻松生成自己的分段颜色图:
N = 30
test_cmaps = ['gist_rainbow','nipy_spectral','gist_ncar']
segmented_cmaps = [matplotlib.colors.ListedColormap(plt.get_cmap(t)(np.linspace(0,1,N))) for t in test_cmaps]
nrows = len(test_cmaps)
gradient = np.linspace(0, 1, 256)
gradient = np.vstack((gradient, gradient))
def plot_color_gradients(cmap_category, cmap_list, nrows):
fig, axes = plt.subplots(nrows=nrows)
fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99)
axes[0].set_title(cmap_category + ' colormaps', fontsize=14)
for ax, name in zip(axes, cmap_list):
ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name))
pos = list(ax.get_position().bounds)
x_text = pos[0] - 0.01
y_text = pos[1] + pos[3]/2.
fig.text(x_text, y_text, name, va='center', ha='right', fontsize=10)
# Turn off *all* ticks & spines, not just the ones with colormaps.
for ax in axes:
ax.set_axis_off()
plot_color_gradients('test', segmented_cmaps, nrows)
plt.show()
您还可以像这样组装不同的cmap来创建自己的cmap:
N = 10 # number of colors to extract from each of the base_cmaps below
base_cmaps = ['Greys','Purples','Reds','Blues','Oranges','Greens']
n_base = len(base_cmaps)
# we go from 0.2 to 0.8 below to avoid having several whites and blacks in the resulting cmaps
colors = np.concatenate([plt.get_cmap(name)(np.linspace(0.2,0.8,N)) for name in base_cmaps])
cmap = matplotlib.colors.ListedColormap(colors)
gradient = np.linspace(0, 1, 256)
gradient = np.vstack((gradient, gradient))
fig, ax = plt.subplots(1,1,figsize=(5,1))
ax.imshow(gradient, aspect='auto', cmap=cmap)