我有一个函数f()
,该函数返回一个DataFrame,我事先不知道其行数。我在多线程上下文中调用f()
。我正在存储这样的结果:
results = [DataFrame() for _ in 1:100]
Threads.@threads for hi in 1:100
results[hi] = f(df)
end
运行此代码时,内存使用量激增,可能是因为results
在获得DataFrame的大小时不得不不断调整自身大小[编辑:这不是真的]。预先分配结果数组以免造成内存不足的最佳方法是什么?
****使用MWE更新****
function func(df::DataFrame)
X = df[:time]
indices = findall(X .> 0)
end
# read in R data
rds = "blablab.rds"
objs = load(rds);
params = collect(0.5:0.005:0.7);
for i in 1:length(objs)
cols = [string(name) for name in names(objs.data[i]) if occursin("blabla",string(name))]
hypers = [(a,b) for a in cols, b in params]
results = [DataFrame() for _ in 1:length(hypers)]
# HERE IS WHERE THE MEMORY BLOWS UP
Threads.@threads for hi in 1:length(hypers)
name, val = hypers[hi]
results[hi] = func(objs.data[i])
end
end
df
为0.7GB。当我运行这段代码时,我的内存使用量高达30GB!好像只是访问df
中的func()
列正在复制整个内容?
答案 0 :(得分:1)
请在下面找到相同代码的两个版本-单线程和多线程,它们是根据DataFrame
函数返回的一组DataFrame
生成f()
并具有随机长度。
using Random
using DataFrames
using BenchmarkTools
function f(rngs::Vector{Random.MersenneTwister}, offset)::DataFrame
t = Threads.threadid()
n = rand(rngs[t+offset], 1:20)
DataFrame(a=1:n,b=21:(20+n),t=t+offset)
end
function test_threads(rngs::Vector{Random.MersenneTwister})
res = DataFrame([Int,Int,Int],[:a,:b,:t],0)
lock = Threads.SpinLock()
Threads.@threads for i in 1:100
df = f(rngs,0)
Threads.lock(lock)
append!(res,df)
Threads.unlock(lock)
end
res
end
function test_normal(rngs::Vector{Random.MersenneTwister})
res = DataFrame([Int,Int,Int],[:a,:b,:t],0)
for i in 1:100
append!(res,f(rngs, i%2))
end
res
end
现在让我们进行测试:
julia> rngs = [Random.MersenneTwister(i) for i in 1:2];
julia> @btime test_normal($rngs);
891.306 μs (5983 allocations: 476.67 KiB)
rngs = [Random.MersenneTwister(i) for i in 1:Threads.nthreads()];
@btime test_threads($rngs);
674.559 μs (5549 allocations: 425.69 KiB)