我有一个文件,其中提供了一些数据,即x和y值。我的程序绘制了这些点的回归线,但是我现在需要的是在OY轴上找到值,如果将其拉长,我的线将与之相交。
我只需要延长线,使其与OY轴相交,然后找到该点的确切坐标即可。
到目前为止,我的代码:
import numpy as np
import matplotlib.pyplot as plt # To visualize
import pandas as pd # To read data
from sklearn.linear_model import LinearRegression
data = pd.read_csv('data.csv') # load data set
X = data.iloc[:, 0].values.reshape(-1, 1) # values converts it into a numpy array
Y = data.iloc[:, 1].values.reshape(-1, 1) # -1 means that calculate the dimension of rows, but have 1 column
linear_regressor = LinearRegression() # create object for the class
linear_regressor.fit(X, Y) # perform linear regression
Y_pred = linear_regressor.predict(X) # make predictions
plt.scatter(X, Y)
plt.plot(X, Y_pred, color='red')
plt.show()
我的代码需要一个名为“ data.csv”的文件,其中包含给定值的坐标。我的示例具有以下值:
5,0.8
10,0.7
15,0.66
20,0.493
25,0.5
30,0.21
答案 0 :(得分:2)
您是否想要这样的东西,您可以在其中使用LinearRegressor对象的intercept_
属性来获得x等于零的y截距:
import numpy as np
import matplotlib.pyplot as plt # To visualize
import pandas as pd # To read data
from io import StringIO
from sklearn.linear_model import LinearRegression
txtfile = StringIO("""5,0.8
10,0.7
15,0.66
20,0.493
25,0.5
30,0.21""")
data = pd.read_csv(txtfile, header=None) # load data set
X = data.iloc[:, 0].values.reshape(-1, 1) # values converts it into a numpy array
Y = data.iloc[:, 1].values.reshape(-1, 1) # -1 means that calculate the dimension of rows, but have 1 column
linear_regressor = LinearRegression() # create object for the class
linear_regressor.fit(X, Y) # perform linear regression
Y_pred = linear_regressor.predict(X) # make predictions
plt.scatter(X, Y)
plt.plot(X, Y_pred, color='red')
plt.plot([0, X[0]], [linear_regressor.intercept_, Y_pred[0]], c="green", linestyle='--')
ax = plt.gcf().gca()
ax.spines['left'].set_position('zero')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.show()
输出: