我正在尝试同时对多个直方图进行动画处理。该动画旨在以增量方式可视化遵循四个不同分布(正态,伽玛,指数和均匀)的样本。
我已阅读并能够使用以下线程Animate multiple shapes in python3 using matplotlib对具有多个子图的matplotlib动画文档的示例进行迭代。但是,在“更新”功能之前确定随机变量并尝试用动画逐步更新直方图会导致出现我似乎无法解决的问题。 Matplotlib版本:3.0.2
import matplotlib.animation as animation
import numpy as np
n = 100
x = np.random.normal(loc=2.5, scale=1.0, size=n)
fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, sharex=True, sharey=True)
def update(curr):
if curr == n:
a.event_source.stop()
plt.cla()
bins = np.arange(-2, 5, 0.5)
ax1.hist(x[:curr], bins=bins)
plt.axis([-2, 6, 0, 30])
ax1.set_title('Sampling the Normal Distribution')
plt.gca().set_ylabel('Frequency')
plt.gca().set_xlabel('Value')
plt.annotate('n = {}'.format(curr), [3,27])
a = animation.FuncAnimation(fig, update, interval=100)
plt.show()
n = 100
x1 = np.random.normal(loc=2.5, scale=1.0, size=n)
x2 = np.random.gamma(shape=2.0, scale=1.0, size=n)
x3 = np.random.exponential(scale=1.0, size=n)
x4 = np.random.uniform(low=0, high = 5, size=n)
data = [x1, x2, x3, x4]
dist = ['Normal', 'Gamma', 'Exponential', 'Uniform']
bins = np.arange(-2,6,0.5) # generate range for bins
# plot the histograms
fig, (ax1,ax2,ax3,ax4) = plt.subplots(4, 1, sharex=True, sharey=True)
def update(curr):
if curr == n:
a.event_source.stop()
plt.cla()
ax1.hist(x1[:curr], normed=True, bins=bins, color='blue')
ax2.hist(x2[:curr], normed=True, bins=bins, color='red')
ax3.hist(x3[:curr], normed=True, bins=bins, color='green')
ax4.hist(x4[:curr], normed=True, bins=bins, color='gray')
a = animation.FuncAnimation(fig, update, interval=100)
plt.show()
n = 100
x1 = np.random.normal(loc=2.5, scale=1.0, size=n)
x2 = np.random.gamma(shape=2.0, scale=1.0, size=n)
x3 = np.random.exponential(scale=1.0, size=n)
x4 = np.random.uniform(low=0, high = 5, size=n)
data = [x1, x2, x3, x4]
dist = ['Normal', 'Gamma', 'Exponential', 'Uniform']
bins = np.arange(-2,6,0.5) # generate range for bins
# plot the histograms
fig, (ax1,ax2,ax3,ax4) = plt.subplots(4, 1, sharex=True, sharey=True)
ax1.hist(x1, normed=True, bins=bins, color='blue')
ax2.hist(x2, normed=True, bins=bins, color='red')
ax3.hist(x3, normed=True, bins=bins, color='green')
ax4.hist(x4, normed=True, bins=bins, color='gray')
plt.show()