可以帮助我解决R闪闪发亮的错误
kmeans_model <- iris_tbl %>%
select(Petal_Width, Petal_Length) %>%
ml_kmeans(centers = 3)
错误:java.lang.IllegalArgumentException:字段“功能”不正确 存在。可用字段:Petal_Width,Petal_Length
at org.apache.spark.sql.types.StructType$$anonfun$apply$1.apply(StructType.scala:274) at org.apache.spark.sql.types.StructType$$anonfun$apply$1.apply(StructType.scala:274) at scala.collection.MapLike$class.getOrElse(MapLike.scala:128) at scala.collection.AbstractMap.getOrElse(Map.scala:59) at org.apache.spark.sql.types.StructType.apply(StructType.scala:273) at org.apache.spark.ml.util.SchemaUtils$.checkColumnTypes(SchemaUtils.scala:58) at org.apache.spark.ml.util.SchemaUtils$.validateVectorCompatibleColumn(SchemaUtils.scala:119) at org.apache.spark.ml.clustering.KMeansParams$class.validateAndTransformSchema(KMeans.scala:96) at org.apache.spark.ml.clustering.KMeans.validateAndTransformSchema(KMeans.scala:285) at org.apache.spark.ml.clustering.KMeans.transformSchema(KMeans.scala:382) at org.apache.spark.ml.PipelineStage.transformSchema(Pipeline.scala:74) at org.apache.spark.ml.clustering.KMeans$$anonfun$fit$1.apply(KMeans.scala:341) at org.apache.spark.ml.clustering.KMeans$$anonfun$fit$1.apply(KMeans.scala:340) at org.apache.spark.ml.util.Instrumentation$$anonfun$11.apply(Instrumentation.scala:183) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.ml.util.Instrumentation$.instrumented(Instrumentation.scala:183) at org.apache.spark.ml.clustering.KMeans.fit(KMeans.scala:340) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source) at java.lang.reflect.Method.invoke(Unknown Source) at sparklyr.Invoke.invoke(invoke.scala:139) at sparklyr.StreamHandler.handleMethodCall(stream.scala:123) at sparklyr.StreamHandler.read(stream.scala:66) at sparklyr.BackendHandler.channelRead0(handler.scala:51) at sparklyr.BackendHandler.channelRead0(handler.scala:4) at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340) at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:102) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340) at io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:310) at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:284) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340) at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1359) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348) at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:935) at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:138) at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:645) at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:580) at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:497) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:459) at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:858) at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:138) at java.lang.Thread.run(Unknown Source)
警告:...的某些组件未使用:中心
我已经尝试过使用其他功能,但是对于3个集群并仅拾取2个集群并没有作用
kmeans_model <- iris_tbl %>%
ml_kmeans(formula= ~ Petal_Width + Petal_Length, centers = 3)
#Warning: Some components of ... were not used: centers
print(kmeans_model)
#K-means clustering with 2 clusters
#
#Cluster centers:
# Petal_Width Petal_Length
#1 1.6818182 4.925253
#2 0.2627451 1.492157
#
#Within Set Sum of Squared Errors = 86.39022>
答案 0 :(得分:0)
错误的第一行很简单:
字段“功能”不存在。
如果您查看?ml_kmeans
的文档,您会发现您需要指定公式(第二次尝试)或features_col。现在,模型的Spark功能中的qucik注释应该在data.frame
您的第二个错误/警告消息也很简单:
警告:...的某些组件未使用:中心
centers
不是ml_kmeans
中的参数。您要使用的是k
kmeans_model <- iris_tbl %>%
ml_kmeans(formula= ~ Petal_Width + Petal_Length, k = 3)
kmeans_model
# K-means clustering with 3 clusters
#
# Cluster centers:
# Petal_Width Petal_Length
# 1 1.359259 4.292593
# 2 0.246000 1.462000
# 3 2.047826 5.626087
#
# Within Set Sum of Squared Errors = 31.41289
要在没有公式的情况下运行,您需要使用ft_vector_assembler
kmeans_model <- iris_tbl %>%
ft_vector_assembler(input_cols=c("Sepal_Width","Petal_Length"), output_col="features") %>%
ml_kmeans(k = 3)