我要计算投资组合中每只股票的风险贡献。
portfolioComponentReturns <- na.omit(Return.calculate(monthly_return, method = "log"))
covariance_matrix <- cov(portfolioComponentReturns)
# Square root of transpose of the weights cross prod covariance matrix returns
# cross prod weights gives portfolio standard deviation.
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
# Marginal contribution of each asset.
marginal_contribution <- w %*% covariance_matrix / sd_portfolio[1, 1]
# Component contributions to risk are the weighted marginal contributions
component_contribution <- marginal_contribution * w
# This should equal total portfolio vol, or the object `sd_portfolio`
components_summed <- rowSums(component_contribution)
# To get the percentage contribution, divide component contribution by total sd.
component_percentages <- component_contribution / sd_portfolio[1, 1]
percentage_tibble_by_hand <-
tibble(symbols, w, as.vector(component_percentages)) %>%
rename(asset = symbols, 'portfolio weight' = w, 'risk contribution' = `as.vector(component_percentages)`)
percentage_tibble_by_hand
但是从第一行开始我就有以下问题:
> portfolioComponentReturns <- na.omit(Return.calculate(monthly_return, method = "log"))
Warning message:
In log(pr) : NaNs produced
>
> covariance_matrix <- cov(portfolioComponentReturns)
>
> # Square root of transpose of the weights cross prod covariance matrix returns
> # cross prod weights gives portfolio standard deviation.
> sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
Error in t(w) %*% covariance_matrix : non-conformable arguments
数据文件为here。
为了获得monthly_return
:
library (dplyr)
library (lubridate)
df <- read.xlsx ("Data.xlsx", sheet = "Sector-STOXX600", startRow = 2, colNames = TRUE, detectDates = TRUE, skipEmptyRows = FALSE)
df [2:19] <- data.matrix (df [2:19])
# changing nas with the preceding value
nas <- which(apply(df[, -1], 1, FUN=function(x) any(is.na(x))))
ver <- c(nas, nas - 1, nas + 1)
ver <- ver[order(ver)]
df[nas, -1] <- (df[nas-1,-1] + df[nas+1,-1])/2
df[ver,]
percent_change2 <- function(x)last(x)/first(x) - 1
monthly_return <- df %>%
group_by(gr = floor_date(Date, unit = "month")) %>%
summarize_at(vars(-Date, -gr), percent_change2) %>%
ungroup()
# Generamos el xts, indicando la columna con la info de tiempo
monthly_return <- xts(monthly_return[,-1], order.by=monthly_return$gr)