我正在关注python教程。当我尝试创建python env时,出现此错误。
UnsatisfiableError:发现以下规格 冲突: -mkl == 2019.0 = 118 -scipy == 1.1.0 = py36h4f6bf74_1-> numpy [version ='> = 1.15.1,<2.0a0']-> mkl [version ='> = 2019.1,<2020.0a0']使用“ conda搜索--info ” 查看每个程序包的依赖性。
这是我的yml文件
name: python-cvcourse
channels:
- michael_wild
- defaults
dependencies:
- absl-py=0.4.1=py36_0
- appdirs=1.4.3=py36h28b3542_0
- asn1crypto=0.24.0=py36_0
- astor=0.7.1=py36_0
- attrs=18.2.0=py36h28b3542_0
- automat=0.7.0=py36_0
- backcall=0.1.0=py36_0
- blas=1.0=mkl
- bleach=2.1.4=py36_0
- ca-certificates=2018.03.07=0
- certifi=2018.10.15=py36_0
- cffi=1.11.5=py36h74b6da3_1
- colorama=0.3.9=py36h029ae33_0
- constantly=15.1.0=py36h28b3542_0
- cryptography=2.3.1=py36h74b6da3_0
- cudatoolkit=9.0=1
- cudnn=7.1.4=cuda9.0_0
- cycler=0.10.0=py36h009560c_0
- decorator=4.3.0=py36_0
- entrypoints=0.2.3=py36_2
- freetype=2.9.1=ha9979f8_1
- gast=0.2.0=py36_0
- grpcio=1.12.1=py36h1a1b453_0
- h5py=2.8.0=py36hf7173ca_2
- hdf5=1.8.20=hac2f561_1
- html5lib=1.0.1=py36_0
- hyperlink=18.0.0=py36_0
- icc_rt=2017.0.4=h97af966_0
- icu=58.2=ha66f8fd_1
- idna=2.7=py36_0
- incremental=17.5.0=py36_0
- intel-openmp=2019.0=118
- ipykernel=4.9.0=py36_0
- ipython=6.5.0=py36_0
- ipython_genutils=0.2.0=py36h3c5d0ee_0
- ipywidgets=7.4.1=py36_0
- jedi=0.12.1=py36_0
- jinja2=2.10=py36_0
- jpeg=9b=hb83a4c4_2
- jsonschema=2.6.0=py36h7636477_0
- jupyter=1.0.0=py36_6
- jupyter_client=5.2.3=py36_0
- jupyter_console=5.2.0=py36_1
- jupyter_core=4.4.0=py36_0
- jupyterlab=0.34.9=py36_0
- jupyterlab_launcher=0.13.1=py36_0
- keras=2.2.2=0
- keras-applications=1.0.4=py36_1
- keras-base=2.2.2=py36_0
- keras-preprocessing=1.0.2=py36_1
- kiwisolver=1.0.1=py36h6538335_0
- libopencv=3.4.2=h20b85fd_0
- libpng=1.6.34=h79bbb47_0
- libprotobuf=3.6.0=h1a1b453_0
- libsodium=1.0.16=h9d3ae62_0
- libtiff=4.0.9=h36446d0_2
- m2w64-gcc-libgfortran=5.3.0=6
- m2w64-gcc-libs=5.3.0=7
- m2w64-gcc-libs-core=5.3.0=7
- m2w64-gmp=6.1.0=2
- m2w64-libwinpthread-git=5.0.0.4634.697f757=2
- markdown=2.6.11=py36_0
- markupsafe=1.0=py36hfa6e2cd_1
- matplotlib=2.2.3=py36hd159220_0
- mistune=0.8.3=py36hfa6e2cd_1
- mkl=2019.0=118
- mkl_fft=1.0.4=py36h1e22a9b_1
- mkl_random=1.0.1=py36h77b88f5_1
- msys2-conda-epoch=20160418=1
- nbconvert=5.3.1=py36_0
- nbformat=4.4.0=py36h3a5bc1b_0
- notebook=5.6.0=py36_0
- numpy=1.15.1=py36ha559c80_0
- numpy-base=1.15.1=py36h8128ebf_0
- olefile=0.46=py36_0
- opencv=3.4.2=py36h40b0b35_0
- openssl=1.0.2p=hfa6e2cd_0
- pandoc=2.2.3.2=0
- pandocfilters=1.4.2=py36_1
- parso=0.3.1=py36_0
- pickleshare=0.7.4=py36h9de030f_0
- pillow=5.2.0=py36h08bbbbd_0
- pip=10.0.1=py36_0
- prometheus_client=0.3.1=py36h28b3542_0
- prompt_toolkit=1.0.15=py36h60b8f86_0
- protobuf=3.6.0=py36he025d50_0
- py-opencv=3.4.2=py36hc319ecb_0
- pyasn1=0.4.4=py36h28b3542_0
- pyasn1-modules=0.2.2=py36_0
- pycparser=2.18=py36_1
- pygments=2.2.0=py36hb010967_0
- pyopenssl=18.0.0=py36_0
- pyparsing=2.2.0=py36_1
- pyqt=5.9.2=py36ha878b3d_0
- python=3.6.6=hea74fb7_0
- python-dateutil=2.7.3=py36_0
- pytz=2018.5=py36_0
- pywin32=223=py36hfa6e2cd_1
- pywinpty=0.5.4=py36_0
- pyyaml=3.13=py36hfa6e2cd_0
- pyzmq=17.1.2=py36hfa6e2cd_0
- qt=5.9.6=vc14h62aca36_0
- qtconsole=4.4.1=py36_0
- scikit-learn=0.19.1=py36hae9bb9f_0
- scipy=1.1.0=py36h4f6bf74_1
- send2trash=1.5.0=py36_0
- service_identity=17.0.0=py36h28b3542_0
- setuptools=40.2.0=py36_0
- simplegeneric=0.8.1=py36_2
- sip=4.19.12=py36h6538335_0
- six=1.11.0=py36_1
- sqlite=3.24.0=h7602738_0
- tensorflow=1.10.0
- termcolor=1.1.0=py36_1
- terminado=0.8.1=py36_1
- testpath=0.3.1=py36h2698cfe_0
- tk=8.6.8=hfa6e2cd_0
- tornado=5.1=py36hfa6e2cd_0
- traitlets=4.3.2=py36h096827d_0
- twisted=18.7.0=py36hfa6e2cd_1
- vc=14=h0510ff6_3
- vs2015_runtime=14.0.25123=3
- wcwidth=0.1.7=py36h3d5aa90_0
- webencodings=0.5.1=py36_1
- werkzeug=0.14.1=py36_0
- wheel=0.31.1=py36_0
- widgetsnbextension=3.4.1=py36_0
- wincertstore=0.2=py36h7fe50ca_0
- winpty=0.4.3=4
- yaml=0.1.7=hc54c509_2
- zeromq=4.2.5=he025d50_1
- zlib=1.2.11=h8395fce_2
- zope=1.0=py36_1
- zope.interface=4.5.0=py36hfa6e2cd_0
- opencv-contrib=3.3.1=py36_1
prefix: C:\Users\Marcial\Anaconda3\envs\cvcourse_windows
这是我的命令
conda env create -f cvcourse_windows.yml -n cv_python
我试图删除那些软件包,但其他软件包冲突却出现了,我还重新安装了conda
答案 0 :(得分:0)
使用此
def detail(request, product_id):
product = get_object_or_404(Product, pk=product_id)
return render(request, 'product/detail.html', {'product': product})
针对OP的错误
无法满足的错误:发现以下规范存在冲突:-mkl == 2019.0 = 118-scipy == 1.1.0 = py36h4f6bf74_1-> numpy [version ='> = 1.15.1,<2.0a0']- > mkl [version ='> = 2019.1,<2020.0a0']使用“ conda search --info”查看每个软件包的依赖关系。
它说你有 mkl版本2019.0内部版本118 但您有一个scipy-1.1.0-py36h4f6bf74_1,需要numpy> = 1.15.1,需要mkl> = 2019.1
解决方案是将您的mkl升级到2019.1或更高版本,并早于2020.0a0
您可以使用name: python-cvcourse
channels:
- michael_wild
- defaults
dependencies:
- absl-py=0.4.1=py36_0
- appdirs=1.4.3=py36h28b3542_0
- asn1crypto=0.24.0=py36_0
- astor=0.7.1=py36_0
- attrs=18.2.0=py36h28b3542_0
- automat=0.7.0=py36_0
- backcall=0.1.0=py36_0
- blas=1.0=mkl
- bleach=2.1.4=py36_0
- ca-certificates=2018.03.07=0
- certifi=2018.10.15=py36_0
- cffi=1.11.5=py36h74b6da3_1
- colorama=0.3.9=py36h029ae33_0
- constantly=15.1.0=py36h28b3542_0
- cryptography=2.3.1=py36h74b6da3_0
- cudatoolkit=9.0=1
- cudnn=7.1.4=cuda9.0_0
- cycler=0.10.0=py36h009560c_0
- decorator=4.3.0=py36_0
- entrypoints=0.2.3=py36_2
- freetype=2.9.1=ha9979f8_1
- gast=0.2.0=py36_0
- grpcio=1.12.1=py36h1a1b453_0
- h5py=2.8.0=py36hf7173ca_2
- hdf5=1.8.20=hac2f561_1
- html5lib=1.0.1=py36_0
- hyperlink=18.0.0=py36_0
- icc_rt=2017.0.4=h97af966_0
- icu=58.2=ha66f8fd_1
- idna=2.7=py36_0
- incremental=17.5.0=py36_0
- intel-openmp=2019.0=118
- ipykernel=4.9.0=py36_0
- ipython=6.5.0=py36_0
- ipython_genutils=0.2.0=py36h3c5d0ee_0
- ipywidgets=7.4.1=py36_0
- jedi=0.12.1=py36_0
- jinja2=2.10=py36_0
- jpeg=9b=hb83a4c4_2
- jsonschema=2.6.0=py36h7636477_0
- jupyter=1.0.0=py36_6
- jupyter_client=5.2.3=py36_0
- jupyter_console=5.2.0=py36_1
- jupyter_core=4.4.0=py36_0
- jupyterlab=0.34.9=py36_0
- jupyterlab_launcher=0.13.1=py36_0
- keras=2.2.2=0
- keras-applications=1.0.4=py36_1
- keras-base=2.2.2=py36_0
- keras-preprocessing=1.0.2=py36_1
- kiwisolver=1.0.1=py36h6538335_0
- libopencv=3.4.2=h20b85fd_0
- libpng=1.6.34=h79bbb47_0
- libprotobuf=3.6.0=h1a1b453_0
- libsodium=1.0.16=h9d3ae62_0
- libtiff=4.0.9=h36446d0_2
- m2w64-gcc-libgfortran=5.3.0=6
- m2w64-gcc-libs=5.3.0=7
- m2w64-gcc-libs-core=5.3.0=7
- m2w64-gmp=6.1.0=2
- m2w64-libwinpthread-git=5.0.0.4634.697f757=2
- markdown=2.6.11=py36_0
- markupsafe=1.0=py36hfa6e2cd_1
- matplotlib=2.2.3=py36hd159220_0
- mistune=0.8.3=py36hfa6e2cd_1
- mkl=2018.0.3=1
- mkl_fft=1.0.4=py36h1e22a9b_1
- mkl_random=1.0.1=py36h77b88f5_1
- msys2-conda-epoch=20160418=1
- nbconvert=5.3.1=py36_0
- nbformat=4.4.0=py36h3a5bc1b_0
- notebook=5.6.0=py36_0
- numpy=1.15.4=py36ha559c80_0
- numpy-base=1.15.4=py36h8128ebf_0
- olefile=0.46=py36_0
- opencv=3.4.2=py36h40b0b35_0
- openssl=1.0.2p=hfa6e2cd_0
- pandoc=2.2.3.2=0
- pandocfilters=1.4.2=py36_1
- parso=0.3.1=py36_0
- pickleshare=0.7.4=py36h9de030f_0
- pillow=5.2.0=py36h08bbbbd_0
- pip=10.0.1=py36_0
- prometheus_client=0.3.1=py36h28b3542_0
- prompt_toolkit=1.0.15=py36h60b8f86_0
- protobuf=3.6.0=py36he025d50_0
- py-opencv=3.4.2=py36hc319ecb_0
- pyasn1=0.4.4=py36h28b3542_0
- pyasn1-modules=0.2.2=py36_0
- pycparser=2.18=py36_1
- pygments=2.2.0=py36hb010967_0
- pyopenssl=18.0.0=py36_0
- pyparsing=2.2.0=py36_1
- pyqt=5.9.2=py36ha878b3d_0
- python=3.6.6=hea74fb7_0
- python-dateutil=2.7.3=py36_0
- pytz=2018.5=py36_0
- pywin32=223=py36hfa6e2cd_1
- pywinpty=0.5.4=py36_0
- pyyaml=3.13=py36hfa6e2cd_0
- pyzmq=17.1.2=py36hfa6e2cd_0
- qt=5.9.6=vc14h62aca36_0
- qtconsole=4.4.1=py36_0
- scikit-learn=0.19.1=py36hae9bb9f_0
- scipy=1.1.0=py36h4f6bf74_1
- send2trash=1.5.0=py36_0
- service_identity=17.0.0=py36h28b3542_0
- setuptools=40.2.0=py36_0
- simplegeneric=0.8.1=py36_2
- sip=4.19.8=py36h6538335_0
- six=1.11.0=py36_1
- sqlite=3.24.0=h7602738_0
- tensorflow=1.10.0
- termcolor=1.1.0=py36_1
- terminado=0.8.1=py36_1
- testpath=0.3.1=py36h2698cfe_0
- tk=8.6.8=hfa6e2cd_0
- tornado=5.1=py36hfa6e2cd_0
- traitlets=4.3.2=py36h096827d_0
- twisted=18.7.0=py36hfa6e2cd_1
- vc=14=h0510ff6_3
- vs2015_runtime=14.0.25123=3
- wcwidth=0.1.7=py36h3d5aa90_0
- webencodings=0.5.1=py36_1
- werkzeug=0.14.1=py36_0
- wheel=0.31.1=py36_0
- widgetsnbextension=3.4.1=py36_0
- wincertstore=0.2=py36h7fe50ca_0
- winpty=0.4.3=4
- yaml=0.1.7=hc54c509_2
- zeromq=4.2.5=he025d50_1
- zlib=1.2.11=h8395fce_2
- zope=1.0=py36_1
- zope.interface=4.5.0=py36hfa6e2cd_0
- opencv-contrib=3.3.1=py36_1
prefix: C:\Users\Marcial\Anaconda3\envs\cvcourse_windows
查看2019年的所有版本
您还会遇到其他错误,请继续阅读解决方案
对我来说,我无法产生相同的问题。 每次尝试构建env时,都会遇到一个与numpy有关的问题,尽管其所有依赖项都是有效的,但一直显示错误,因此我将其更改为
conda seach mkl=2019
我也遇到其他错误
UnsatisfiableError:发现以下规范存在冲突: -qtconsole == 4.4.1 = py36_0-> pyqt [version ='> = 5.9.2,<5.10.0a0']-> sip [version = '> = 4.19.4,<= 4.19.8'] -sip == 4.19.12 = py36h6538335_0
几乎一样 qtconsole-4.4.1-py36_0需要嵌套的sip <4.19.8,而您的sip为4.19.12
相同的解决方案,将您的饮酒等级降为 - numpy=1.15.4=py36ha559c80_0
- numpy-base=1.15.4=py36h8128ebf_0
如果以相同的方式进行修复,您会遇到很多错误
最后,使用keras-base和mkl会出错,只是将mkl降级为sip=4.19.8=py36h6538335_0
该文件充满了缺少匹配项的依赖关系,您说它是python教程,但看起来像是故障排除测试?
答案 1 :(得分:0)
对于无法在同一教程中创建环境的人, 我在当前win-64频道中丢失了所有软件包的软件包
更新Anaconda后我能够安装软件包 使用命令:conda update conda