我必须创建一个介于-3和3之间的随机数列表(带小数)。问题是该列表的平均值必须为0,标准差必须为1。如何调整平均值和标准偏差参数?有可以使用的功能吗?
我已经能够创建一个介于-3和3之间的随机数列表。
import random
def lista_aleatorios(n):
lista = [0] * n
for i in range(n):
lista[i] = random.uniform(-3, 3)
return lista
print("\nHow many numbers do you want?: ")
n = int(input())
print (lista_aleatorios(n))
答案 0 :(得分:1)
使用random.gauss
,然后缩放:
import numpy as np
from random import gauss
def bounded_normal(n, mean, std, lower_bound, upper_bound):
# generate numbers between lower_bound and upper_bound
result = []
for i in range(n):
while True:
value = gauss(mean, std)
if lower_bound < value < upper_bound:
break
result.append(value)
# modify the mean and standard deviation
actual_mean = np.mean(result)
actual_std = np.std(result)
mean_difference = mean - actual_mean
std_difference = std / actual_std
new_result = [(element + mean_difference) * std_difference for element in result]
return new_result
答案 1 :(得分:0)
函数random.normalvariate(mu, sigma)
允许您为正态分布的随机变量指定均值和标准差。
答案 2 :(得分:0)
好的,这是解决问题的快速方法(如果您想使用截断的高斯)。设置边界和所需的stddev。我假设均值为0。然后使用粗鲁的代码对分布sigma
进行二进制搜索,求解非线性根(在生产代码中应使用brentq()
)。所有公式均来自Truncated Normal的Wiki页面。由于以下事实,它(sigma)应大于所需的stddev:截断会删除会导致较大stddev的随机值。然后,我们进行快速采样测试-均值和标准差接近期望值,但从不完全等于它们。代码(Python-3.7,Anaconda,Win10 x64)
import numpy as np
from scipy.special import erf
from scipy.stats import truncnorm
def alpha(a, sigma):
return a/sigma
def beta(b, sigma):
return b/sigma
def xi(x, sigma):
return x/sigma
def fi(xi):
return 1.0/np.sqrt(2.0*np.pi) * np.exp(-0.5*xi*xi)
def Fi(x):
return 0.5*(1.0 + erf(x/np.sqrt(2.0)))
def Z(al, be):
return Fi(be) - Fi(al)
def Variance(sigma, a, b):
al = alpha(a, sigma)
be = beta(b, sigma)
ZZ = Z(al, be)
return sigma*sigma*(1.0 + (al*fi(al) - be*fi(be))/ZZ - ((fi(al)-fi(be))/ZZ)**2)
def stddev(sigma, a, b):
return np.sqrt(Variance(sigma, a, b))
m = 0.0 # mean
s = 1.0 # this is what we want
a = -3.0 # left boundary
b = 3.0 # right boundary
#print(stddev(s , a, b))
#print(stddev(s + 0.1, a, b))
slo = 1.0
shi = 1.1
stdlo = stddev(slo, a, b)
stdhi = stddev(shi, a, b)
sigma = -1.0
while True: # binary search for sigma
sme = (slo + shi) / 2.0
stdme = stddev(sme, a, b)
if stdme - s == 0.0:
sigma = stdme
break
elif stdme - s < 0.0:
slo = sme
else:
shi = sme
if shi - slo < 0.0000001:
sigma = (shi + slo) / 2.0
break
print(sigma) # we got it, shall be slightly bigger than s, desired stddev
np.random.seed(73123457)
rvs = truncnorm.rvs(a, b, loc=m, scale=sigma, size=1000000) # quick sampling test
print(np.mean(rvs))
print(np.std(rvs))
对我来说是印刷的
sigma = 1.0153870105743408
mean = -0.000400729471992301
stddev = 1.0024267696681475
使用不同的种子或序列长度,您可能会得到类似
的输出1.0153870105743408
-0.00015923177289006116
0.9999974266369461