我收到的唯一大小为1的数组可以转换为Python标量错误。我假设在代码的最后一部分是dl或gl。我看到有些人遇到此错误是由于与numpy和python变量混淆。我试图回溯以确定需要进行哪些更改以修复此错误,但很麻烦。我用>>>指出了这个错误在哪里。有人可以对此错误提供任何建议吗?谢谢!
gen_inp=tf.placeholder(tf.float32,shape=[None,noise_dim])
disc_inp=tf.placeholder(tf.float32,shape=[None,img_dim])
batch_size=128
num_steps=80000
learning_rate=2e-4
display_step=20
def weight_init(shape):
return tf.random_normal(shape=shape,stddev=1. / tf.sqrt(shape[0] / 2.))
W={"w1" : tf.Variable(weight_init([noise_dim,gen_dim])),
"w2": tf.Variable(weight_init([gen_dim,img_dim])),
"w3": tf.Variable(weight_init([img_dim,disc_dim])),
"w4": tf.Variable(weight_init([disc_dim,1]))}
b={"b1":tf.Variable(tf.zeros([gen_dim])),
"b2":tf.Variable(tf.zeros([img_dim])),
"b3":tf.Variable(tf.zeros([disc_dim])),
"b4":tf.Variable(tf.zeros([1]))}
def gen_fun(x):
h1=tf.matmul(x,W["w1"])
h1=tf.add(h1,b["b1"])
h1=tf.nn.relu(h1)
h1=tf.matmul(h1,W["w2"])
h1=tf.add(h1,b["b2"])
h1=tf.nn.sigmoid(h1)
return h1
def disc_fun(x):
h2=tf.matmul(x,W["w3"])
h2=tf.add(h2,b["b3"])
h2=tf.nn.relu(h2)
h2=tf.matmul(h2,W["w4"])
h2=tf.add(h2,b["b4"])
h2=tf.nn.sigmoid(h2)
gen_out=gen_fun(gen_inp)
disc_real_out=disc_fun(disc_inp)
disc_fake_out=disc_fun(gen_out)
optin_gen=tf.train.AdamOptimizer(learning_rate=learning_rate)
optin_disc=tf.train.AdamOptimizer(learning_rate=learning_rate)
>>> cost_gen=-tf.reduce_mean(tf.log(disc_fake_out))
cost_disc=-tf.reduce_mean(tf.log(disc_real_out))+tf.log(1. -disc_fake_out)
vars_gen = [W['w1'],W['w2'],b['b1'],b['b2']]
vars_disc= [W['w3'],W['w4'],b['b3'],b['b4']]
training_gen=optim_gen.minimize(cost_gen,var_list=vars_gen)
training_disc=optim_gen.minimize(cost_disc,var_list=vars_disc)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for step in range(1, num_steps+1):
batch_x, _ = df.train.next_batch(batch_size)
noise_temp = np.random.uniform(-1., 1., size=[batch_size, noise_dim])
feed_dict = {disc_inp: batch_x, gen_inp: noise_temp}
_, _, gl, dl = sess.run([training_gen, training_disc, cost_gen, cost_disc],
feed_dict=feed_dict)
if step % 2000 == 0 or step == 1:
>>> print('Step %i: Generator Loss: %f, Discriminator Loss: %f' % (step, gl, dl))
print("finished!")
n = 6
canvas = np.empty((28 * n, 28 * n))
for i in range(n):
z= np.random.uniform(-1., 1., size=[n, noise_dim])
g= sess.run(gen_out, feed_dict={gen_inp: z})
g= -1 * (g - 1)
for j in range (n):
canvas[i * 28:(i + 1) * 28, j * 28:(j +1) * 28] = g[j].reshape([28, 28])
plot.figure(figsize=(n, n))
plt.imshow(canvas, origin="upper", cmap="gray")
plot.show()