我正在尝试使用GridSearchCV来调整LightGBM模型中的参数,但是我对如何在GridSearchCV的每次迭代中保存每个预测结果还不熟悉。
但是可悲的是,我只知道如何将结果保存到特定参数中。
这是代码:
param = {
'bagging_freq': 5,
'bagging_fraction': 0.4,
'boost_from_average':'false',
'boost': 'gbdt',
'feature_fraction': 0.05,
'learning_rate': 0.01,
'max_depth': -1,
'metric':'auc',
'min_data_in_leaf': 80,
'min_sum_hessian_in_leaf': 10.0,
'num_leaves': 13,
'num_threads': 8,
'tree_learner': 'serial',
'objective': 'binary',
'verbosity': 1
}
features = [c for c in train_df.columns if c not in ['ID_code', 'target']]
target = train_df['target']
folds = StratifiedKFold(n_splits=10, shuffle=False, random_state=44000)
oof = np.zeros(len(train_df))
predictions = np.zeros(len(test_df))
for fold_, (trn_idx, val_idx) in enumerate(folds.split(train_df.values, target.values)):
print("Fold {}".format(fold_))
trn_data = lgb.Dataset(train_df.iloc[trn_idx][features], label=target.iloc[trn_idx])
val_data = lgb.Dataset(train_df.iloc[val_idx][features], label=target.iloc[val_idx])
num_round = 1000000
clf = lgb.train(param, trn_data, num_round, valid_sets = [trn_data, val_data], verbose_eval=1000, early_stopping_rounds = 3000)
oof[val_idx] = clf.predict(train_df.iloc[val_idx][features], num_iteration=clf.best_iteration)
predictions += clf.predict(test_df[features], num_iteration=clf.best_iteration) / folds.n_splits
print("CV score: {:<8.5f}".format(roc_auc_score(target, oof)))
print('Saving the Result File')
res= pd.DataFrame({"ID_code": test.ID_code.values})
res["target"] = predictions
res.to_csv('result_10fold{}.csv'.format(num_sub), index=False)
以下是数据:
train_df.head(3)
ID_code target var_0 var_1 ... var_199
0 train_0 0 8.9255 -6.7863 -9.2834
1 train_1 1 11.5006 -4.1473 7.0433
2 train_2 0 8.6093 -2.7457 -9.0837
train_df.head(3)
ID_code var_0 var_1 ... var_199
0 test_0 9.4292 11.4327 -2.3805
1 test_1 5.0930 11.4607 -9.2834
2 train_2 7.8928 10.5825 -9.0837
我想保存GridSearchCV的每个迭代的每个predictions
,我已经搜索了几个类似的问题以及在LightGBM中使用 GridSearchCV的其他相关信息。
但是我仍然无法正确编码。
所以,如果不介意的话,谁能帮助我并提供一些相关的教程?
真诚的感谢。
答案 0 :(得分:2)
您可以使用sklearn中的ParameterGrid
或ParameterSampler
进行参数采样-它分别对应于GridSearchCV
和RandomSearchCV
。例如,
def train_lgb(num_folds=11, param=param_original):
...
return predictions, sub
params = {
# your base parameters
}
# define the grid for parameter sampling
from sklearn.model_selection import ParameterGrid
par_grid = ParameterGrid([{'bagging_freq':[6,7]},
{'num_leaves': [13,15]}
])
prediction_list = {}
sub_list = {}
import copy
for i, ps in enumerate(par_grid):
print('This is param{}'.format(i))
# copy the base params dictionary and update with sampled values
val = copy.deepcopy(params)
val.update(ps)
# main training loop
prediction, sub = train_lgb(param=val)
prediction_list.update({key: prediction})
sub_list.update({key: sub})
编辑:顺便说一句,我意识到我最近正在调查同一问题,并且正在学习如何使用某些ML工具进行处理。我创建了一个页面,概述了如何使用MLflow来完成此任务:https://mlisovyi.github.io/KaggleSantander2019/(以及实际代码的关联github页面)。请注意,它偶然基于您正在处理的相同数据:)。我希望它会有用。