我有这个数据集,我想要针对特定时间,纬度和经度提取swnet
的值。如果没有确切的组合,则取最接近的值。
<xarray.Dataset>
Dimensions: (lat: 92, lon: 172, time: 183)
Coordinates:
* lat (lat) float32 4.125001 4.375 4.625 ... 26.624994 26.874996
* lon (lon) float32 nan nan nan ... 24.374996 24.624998 24.875
* time (time) datetime64[ns] 2003-09-01 2003-09-02 ... 2004-03-01
Data variables:
swnet (time, lat, lon) float32 dask.array<shape=(183, 92, 172), chunksize=(1, 92, 172)>
df.sel(time='2003-09-01', lon=6.374997, lat=16.375006, method='nearest')
2738
2739 if not self.is_unique:
-> 2740 raise InvalidIndexError('Reindexing only valid with uniquely'
2741 ' valued Index objects')
2742
InvalidIndexError: Reindexing only valid with uniquely valued Index objects
<xarray.DataArray 'lat' (lat: 92)>
array([ 4.125001, 4.375 , 4.625 , 4.875 , 5.125 , 5.375 ,
5.625 , 5.875 , 6.125001, 6.374997, 6.625001, 6.875002,
7.124997, 7.375001, 7.625003, 7.874998, 8.125002, 8.375004,
8.624998, 8.875002, 9.125005, 9.375001, 9.625 , 9.874996,
10.124999, 10.375003, 10.625 , 10.875004, 11.124999, 11.374996,
11.625 , 11.875002, 12.125002, 12.375006, 12.624997, 12.874997,
13.125 , 13.375004, 13.625004, 13.875008, 14.124997, 14.374997,
14.625 , 14.875005, 15.125004, 15.374993, 15.624997, 15.874997,
16.125 , 16.375006, 16.625006, 16.874994, 17.124996, 17.375 ,
17.624998, 17.875004, 18.125004, 18.374994, 18.624994, 18.875 ,
19.125002, 19.375004, 19.625008, 19.875 , 20.125002, 20.375008,
20.624996, 20.874998, 21.12499 , 21.374994, 21.624996, 21.875 ,
22.125004, 22.375006, 22.625011, 22.875004, 23.125006, 23.375011,
23.624994, 23.874996, 24.12499 , 24.374996, 24.624998, 24.875 ,
25.125006, 25.375008, 25.625004, 25.875006, 26.125011, 26.374989,
26.624994, 26.874996], dtype=float32)
Coordinates:
* lat (lat) float32 4.125001 4.375 4.625 ... 26.624994 26.874996
<xarray.DataArray 'lon' (lon: 172)>
array([ nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan,
-13.375004, -13.125 , -12.874997, -12.624997, -12.375006, -12.125002,
-11.875002, -11.625 , -11.374996, -11.124999, -10.875004, -10.625 ,
-10.375003, -10.124999, -9.874996, -9.625 , -9.375001, -9.125005,
-8.875002, -8.624998, -8.375004, -8.125002, -7.874998, -7.625003,
-7.375001, -7.124997, -6.875002, -6.625001, -6.374997, -6.125001,
-5.875 , -5.625 , -5.375 , -5.125 , -4.875 , -4.625 ,
-4.375 , -4.125001, -3.874999, -3.625 , -3.375001, -3.124999,
-2.874999, -2.625001, -2.375 , -2.125 , -1.875 , -1.625 ,
-1.375 , -1.125 , -0.875 , -0.625 , -0.375 , -0.125 ,
0.125 , 0.375 , 0.625 , 0.875 , 1.125 , 1.375 ,
1.625 , 1.875 , 2.125 , 2.375 , 2.625001, 2.874999,
3.124999, 3.375001, 3.625 , 3.874999, 4.125001, 4.375 ,
4.625 , 4.875 , 5.125 , 5.375 , 5.625 , 5.875 ,
6.125001, 6.374997, 6.625001, 6.875002, 7.124997, 7.375001,
7.625003, 7.874998, 8.125002, 8.375004, 8.624998, 8.875002,
9.125005, 9.375001, 9.625 , 9.874996, 10.124999, 10.375003,
10.625 , 10.875004, 11.124999, 11.374996, 11.625 , 11.875002,
12.125002, 12.375006, 12.624997, 12.874997, 13.125 , 13.375004,
13.625004, 13.875008, 14.124997, 14.374997, 14.625 , 14.875005,
15.125004, 15.374993, 15.624997, 15.874997, 16.125 , 16.375006,
16.625006, 16.874994, 17.124996, 17.375 , 17.624998, 17.875004,
18.125004, 18.374994, 18.624994, 18.875 , 19.125002, 19.375004,
19.625008, 19.875 , 20.125002, 20.375008, 20.624996, 20.874998,
21.12499 , 21.374994, 21.624996, 21.875 , 22.125004, 22.375006,
22.625011, 22.875004, 23.125006, 23.375011, 23.624994, 23.874996,
24.12499 , 24.374996, 24.624998, 24.875 ], dtype=float32)
Coordinates:
* lon (lon) float32 nan nan nan nan ... 24.374996 24.624998 24.875