我是R的新手,目前正尝试根据我的预定义排除标准对数据进行子集分析。我目前正在尝试删除ICD-10编码的所有患有痴呆症的病例。问题是,有多个变量包含有关每个人的疾病状况的信息(约70个变量),尽管由于它们以相同的方式编码,所以可以将相同的条件应用于所有变量。
一些模拟数据:
#Create dataframe containing simulated data
df = data.frame(ID = c(1001, 1002, 1003, 1004, 1005,1006,1007,1008,1009,1010,1011),
disease_code_1 = c('I802','H356','G560','D235','B178','F011','F023','C761','H653','A049','J679'),
disease_code_2 = c('A071','NA','G20','NA','NA','A049','NA','NA','G300','G308','A045'),
disease_code_3 = c('H250','NA','NA','I802','NA','A481','NA','NA','NA','NA','D352'))
#data is structured as below:
ID disease_code_1 disease_code_2 disease_code_3
1 1001 I802 A071 H250
2 1002 H356 NA NA
3 1003 G560 G20 NA
4 1004 D235 NA I802
5 1005 B178 NA NA
6 1006 F011 A049 A481
7 1007 F023 NA NA
8 1008 C761 NA NA
9 1009 H653 G300 NA
10 1010 A049 G308 NA
11 1011 J679 A045 D352
在这里,我正在尝试删除所有在“ disease_code”变量中带有“痴呆症代码”的病例。
#Remove cases with dementia from dataframe (e.g. F023, G20)
Newdata_df <- subset(df, (2:4 != "F023"|"G20"|"F009"|"F002"|"F001"|"F000"|"F00"|
"G309"| "G308"|"G301"|"G300"|"G30"| "F01"|"F018"|"F013"|
"F012"| "F011"| "F010"|"F01"))
我收到的错误是:
Error in 2:4 != "F023" | "G20" :
operations are possible only for numeric, logical or complex types
理想情况下,子集数据帧如下所示:
ID disease_code_1 disease_code_2 disease_code_3
1 1001 I802 A071 H250
2 1002 H356 NA NA
4 1004 D235 NA I802
5 1005 B178 NA NA
8 1008 C761 NA NA
11 1011 J679 A045 D352
我不确定我的代码中有错误,但是我不确定该如何解决。尽管到目前为止还没有运气,但我尝试了其他几种方法(使用dplyr)。
非常感谢您的帮助!
答案 0 :(得分:4)
我们可以使用要删除的代码创建矢量,然后使用rowSums
进行删除,即
codes_to_remove <- c("F023", "G20", "F009", "F002", "F001", "F000", "F00", "G309", "G308",
"G301", "G300", "G30", "F01", "F018", "F013", "F012", "F011", "F010", "F01")
df[rowSums(sapply(df[-1], `%in%`, codes_to_remove)) == 0,]
给出,
ID disease_code_1 disease_code_2 disease_code_3 1 1001 I802 A071 H250 2 1002 H356 NA NA 4 1004 D235 NA I802 5 1005 B178 NA NA 8 1008 C761 NA NA 11 1011 J679 A045 D352
答案 1 :(得分:3)
如何?
> dementia <- c("F023", "G20", "F009", "F002", "F001", "F000", "F00", "G309", "G308",
+ "G301", "G300", "G30", "F01", "F018", "F013", "F012", "F011", "F010", "F01")
>
> dementia <- apply(sapply(df[, -1], function(x) {x %in% dementia}), 1, any)
>
> df[!dementia,]
ID disease_code_1 disease_code_2 disease_code_3
1 1001 I802 A071 H250
2 1002 H356 NA NA
4 1004 D235 NA I802
5 1005 B178 NA NA
8 1008 C761 NA NA
11 1011 J679 A045 D352
>
编辑:
一个更优雅的解决方案,感谢@ Ronan Shah:
> df[apply(df[-1], 1, function(x) {!any(x %in% dementia)}),]
ID disease_code_1 disease_code_2 disease_code_3
1 1001 I802 A071 H250
2 1002 H356 NA NA
4 1004 D235 NA I802
5 1005 B178 NA NA
8 1008 C761 NA NA
11 1011 J679 A045 D352
希望有帮助。
答案 2 :(得分:3)
一种dplyr
可能是:
df %>%
filter_at(vars(2:4), all_vars(! . %in% c("F023","G20","F009","F002","F001","F000","F00",
"G309", "G308","G301","G300","G30", "F01","F018","F013",
"F012", "F011", "F010","F01")))
ID disease_code_1 disease_code_2 disease_code_3
1 1001 I802 A071 H250
2 1002 H356 NA NA
3 1004 D235 NA I802
4 1005 B178 NA NA
5 1008 C761 NA NA
6 1011 J679 A045 D352
在这种情况下,它会检查2:4列中是否有任何给定的代码。
或者:
df %>%
filter_at(vars(contains("disease_code")), all_vars(! . %in% c("F023","G20","F009","F002","F001","F000","F00",
"G309", "G308","G301","G300","G30", "F01","F018","F013",
"F012", "F011", "F010","F01")))
在这种情况下,它将检查名称为disease_code
的列是否包含任何给定的代码。
答案 3 :(得分:3)
如@docendo discimus的评论中所述,我们可以使用gather
,group_by
ID
将数据帧转换为长格式,并仅选择那些没有ID
放入其中,然后dementia_code
退回到宽格式。
spread
数据
library(tidyverse)
df %>%
gather(key, value, -ID) %>%
group_by(ID) %>%
filter(!any(value %in% dementia_code)) %>%
spread(key, value)
# ID disease_code_1 disease_code_2 disease_code_3
# <dbl> <chr> <chr> <chr>
#1 1001 I802 A071 H250
#2 1002 H356 NA NA
#3 1004 D235 NA I802
#4 1005 B178 NA NA
#5 1008 C761 NA NA
#6 1011 J679 A045 D352
答案 4 :(得分:3)
我们可以使用melt/dcast
中的data.table
library(data.table)
dcast(melt(setDT(df), id.var = 'ID')[,
if(!any(value %in% dementia_codes)) .SD, .(ID)], ID ~ variable)
# ID disease_code_1 disease_code_2 disease_code_3
#1: 1001 I802 A071 H250
#2: 1002 H356 NA NA
#3: 1004 D235 NA I802
#4: 1005 B178 NA NA
#5: 1008 C761 NA NA
#6: 1011 J679 A045 D352
或者可以在base R
中更紧凑地完成此操作而无需重塑
df[!Reduce(`|`, lapply(df[-1], `%in%` , dementia_codes)),]
# ID disease_code_1 disease_code_2 disease_code_3
#1 1001 I802 A071 H250
#2 1002 H356 NA NA
#4 1004 D235 NA I802
#5 1005 B178 NA NA
#8 1008 C761 NA NA
#11 1011 J679 A045 D352
dementia_codes <- c("F023", "G20", "F009", "F002", "F001", "F000",
"F00", "G309", "G308", "G301", "G300", "G30", "F01", "F018", "F013",
"F012", "F011", "F010", "F01")
答案 5 :(得分:2)
一个for
R的base
循环版本,如果您愿意的话。
df <- data.frame(ID = c(1001, 1002, 1003, 1004, 1005,1006,1007,1008,1009,1010,1011),
disease_code_1 = c('I802','H356','G560','D235','B178','F011','F023','C761','H653','A049','J679'),
disease_code_2 = c('A071','NA','G20','NA','NA','A049','NA','NA','G300','G308','A045'),
disease_code_3 = c('H250','NA','NA','I802','NA','A481','NA','NA','NA','NA','D352'), stringsAsFactors = FALSE)
dementia_codes <- c("F023", "G20", "F009", "F002", "F001", "F000", "F00", "G309", "G308", "G301", "G300", "G30", "F01", "F018", "F013", "F012", "F011", "F010", "F01")
new_df <- df[0,]
for(i in 1:nrow(df)){
currRow <- df[i,]
if(any(dementia_codes %in% as.character(currRow)) == FALSE){
new_df <- rbind(new_df, currRow)
}
}
new_df
# ID disease_code_1 disease_code_2 disease_code_3
# 1 1001 I802 A071 H250
# 2 1002 H356 NA NA
# 4 1004 D235 NA I802
# 5 1005 B178 NA NA
# 8 1008 C761 NA NA
# 11 1011 J679 A045 D352