从单个数据框列绘制多行

时间:2019-03-29 12:22:47

标签: python pandas matplotlib

我正在尝试使用matplotlib从gps数据集中绘制时间-空间图。目前,我有一个很大的数据帧字典。我的词典中的每个数据框都是针对一辆车的。

经过大量过滤后,我目前每辆车都有两列,即“时间”列为Datetime(已格式化并可以绘制),而“距离”列为float64类型。

我当前的绘图数据如下所示:

Time    Distance
06:00   0
06:01   0,2
.   .   .
.   .   .
.   .   .
06:45   15
06:46   0
06:47   0,1
.   .   .
.   .   .
.   .   .
07:15   15
07:16   0

您可以看到我的距离列在0-15之间变化。我想要做的是我希望每个0-15数据在时空图中用不同的线表示。

我想画的东西与此类似;

https://cramster-image.s3.amazonaws.com/definitions/CL-3347V2.png

如何为每个0-15节用不同的线绘制距离列?

感谢您的帮助

2 个答案:

答案 0 :(得分:0)

一种方法是创建一个新列,用一个唯一的标签标记连续运行的每个非递减值,然后unstack将这些标签分成几列。每个DataFrame列都绘制为一个单独的数据系列。

# Example data, a bit different from yours
df = pd.DataFrame({'Distance': [0.0, 0.2, 0.4, 0.6, 14.0, 15.0, 
                                0.0, 0.1, 14.0, 15.0, 
                                0.0, 0.3],
                   'Time': ['06:00', '06:01', '06:02', '06:03', '06:44', '06:45',
                            '06:46', '06:47', '07:14', '07:15',
                            '07:16', '07:17']})

# Convert time strings to datetime if needed
df['Time'] = pd.to_datetime(df['Time'])

# Add column that labels each run of non-decreasing values
df['Vehicle'] = df['Distance'].diff().lt(0).cumsum()

df
                  Time  Distance  Vehicle
0  2019-03-29 06:00:00       0.0        0
1  2019-03-29 06:01:00       0.2        0
2  2019-03-29 06:02:00       0.4        0
3  2019-03-29 06:03:00       0.6        0
4  2019-03-29 06:44:00      14.0        0
5  2019-03-29 06:45:00      15.0        0
6  2019-03-29 06:46:00       0.0        1
7  2019-03-29 06:47:00       0.1        1
8  2019-03-29 07:14:00      14.0        1
9  2019-03-29 07:15:00      15.0        1
10 2019-03-29 07:16:00       0.0        2
11 2019-03-29 07:17:00       0.3        2

# Reshape to one column per vehicle
df.set_index(['Time', 'Vehicle'])['Distance'].unstack()

Vehicle                 0     1    2
Time
2019-03-29 06:00:00   0.0   NaN  NaN
2019-03-29 06:01:00   0.2   NaN  NaN
2019-03-29 06:02:00   0.4   NaN  NaN
2019-03-29 06:03:00   0.6   NaN  NaN
2019-03-29 06:44:00  14.0   NaN  NaN
2019-03-29 06:45:00  15.0   NaN  NaN
2019-03-29 06:46:00   NaN   0.0  NaN
2019-03-29 06:47:00   NaN   0.1  NaN
2019-03-29 07:14:00   NaN  14.0  NaN
2019-03-29 07:15:00   NaN  15.0  NaN
2019-03-29 07:16:00   NaN   NaN  0.0
2019-03-29 07:17:00   NaN   NaN  0.3

# plot
df.set_index(['Time', 'Vehicle'])['Distance'].unstack().plot(marker='.')

spacetime diagram

答案 1 :(得分:0)

您可以直接进行plt.plot(df.time, df.dist)并获得此信息:

enter image description here

或者,如果您有很多时间块,也可以不进行堆叠而与Peter的解决方案类似:

df['chunk'] = df['dist'].diff().lt(0).cumsum()

fig, ax = plt.subplots(1,1)
df.groupby('chunk').plot(x='time', y='dist', ax=ax, legend=False, c='b')
plt.show()

并获得

enter image description here